

# **MIL-STD-704F OPTION**

# MIL-STD-704F Aircraft Electric Power Characteristics Test Sequences

# **OPERATION MANUAL**

Pacific Power Source, Inc.

Part Number: 149153

Version: 1.1 Document number: 149153-10 September 07, 2013

# THIS PAGE INTENTIONALLY LEFT BLANK

### SUPPLEMENTAL END USER LICENSE AGREEMENT FOR PACIFIC POWER SOURCE, INC. ADD-ON SOFTWARE

**IMPORTANT – PLEASE READ CAREFULLY:** This Pacific Power Source, Inc. ("Pacific Power Source") Supplemental End-User License Agreement ("Supplemental EULA") is a legal agreement between You (either an individual person or a single legal entity, who will be referred to in this Supplemental EULA as "You") and Pacific Power Source for the additional Pacific Power Source Software that accompanies this Supplemental EULA, including any associated media, printed materials and electronic documentation (the "Add-on Software"). This Add-on Software also includes any software updates, further add-on components, web services and/or supplements that Pacific Power Source may provide to You or make available to You after the date You obtain Your initial copy of the Add-on Software to the extent that such items are not accompanied by a separate license agreement or terms of use. By installing, copying, downloading, accessing or otherwise using the Add-on Software, You expressly and unequivocally agree to be bound by the terms and conditions of the original EULA. However, if you do not have a valid EULA for the underlying Pacific Power Source Software as well as this Supplemental EULA. To the extent that any terms in this Supplemental EULA conflict with the terms in the applicable Pacific Power Source Software EULA, the terms of this Supplemental EULA control solely with respect to the Add-on Software.

#### SOFTWARE LICENSE

The Add-on Software is owned by Pacific Power Source and is protected by United States copyright and intellectual property laws and treaties. Therefore You must treat the Add-on Software like any other copyrighted material. The Add-on Software is licensed, not sold. All instructions, methods, techniques and algorithms provided with the Add-on Software, including, but not limited to, Test Sequences, Test Steps, and Output Sequences, remain the sole property of Pacific Power Source, Inc.

**1. GRANT OF LICENSE.** This Section of the Supplemental EULA describes Your general rights to install and use the Add-on Software The license rights described in this Section are subject to all other terms and conditions of this Supplemental EULA. All rights not expressly granted are reserved by Pacific Power Source.

**General License Grant to Install and Use Software.** You may install and use one copy of the Add-on Software on a single computer, device, workstation, terminal, or other digital electronic or analog device ("Device"). If You have a multi-user license for the Add-on Software, then at any time You may have as many copies of the Add-on Software in use as are permitted by the multi-user license. A license for the Add-on Software may not be shared. If the number of users of the Add-on Software exceeds the number of users permitted by applicable license(s), You will be considered in material breach of this agreement. You may, however, either (a) make one copy of the Add-on Software solely for backup or archival purposes, or (b) transfer the Add-on Software to a single hard disk, provided You keep the original solely for backup or archival purposes. You may not copy the written materials accompanying the Add-on Software.

Additional License Grant for Other Media. The Add-on Software may include certain trademarks, photographs, art, graphics, sounds, music and/or video clips (together "Other Media"). If so, the following terms describe Your rights to the Other Media:

a. You do not own any rights in the Other Media and the limited license herein shall be applicable to the Other Media. You may not sell, license or distribute copies of the Other Media on a stand-alone basis or as part of any collection, product or service.

b. You may not use or distribute any of the Other Media that include representations of identifiable individuals, governments, logos, initials, emblems, or trademarks for any commercial purposes or to express or imply any endorsement or association with any product, service, entity, or activity.

c. You must indemnify, hold harmless, and defend Pacific Power Source from and against any claims or lawsuits, including expert and attorneys' fees that arise from or result from the unauthorized use or distribution of the Other Media by You.

### 2. DESCRIPTION OF OTHER RIGHTS AND LIMITATIONS.

**No Reverse Engineering, Decompilation, and Disassembly.** You may not reverse engineer, decompile, or disassemble the Add-on Software, except and only to the extent that such activity is expressly permitted by applicable law notwithstanding this limitation.

**Operating System Options.** If the Add-on Software is distributed with multiple versions for compatibility with different operating systems, Your license grant extends to using only the applicable version for Your operating system.

**Trademarks.** This Supplemental EULA does not grant You any rights in connection with any trademarks or service marks of Pacific Power Source.

**Support Services.** Pacific Power Source may provide You with support services related to the Add-on Software ("Support Services"). Use of Support Services is governed by the Pacific Power Source policies and programs described in other Pacific Power Source-provided materials. Any further supplemental software and/or code provided to You as part of the Support Services are considered part of the Add-on Software and subject to the terms and conditions of this Supplemental EULA. You acknowledge and agree that Pacific Power Source may use technical information You provide to Pacific Power Source as part of the Support Services for its business purposes.

**Software Transfer.** Except as specified in this Section, the initial licensee of the Add-on Software may make a onetime permanent transfer of this Supplemental EULA and Add-on Software only directly to an end user, provided that the initial licensee has terminated its use of the Add-on Software. This transfer must include all of the Add-on Software (including all component parts, the media and printed materials, any upgrades, this Supplemental EULA, and, if applicable, the Certificate of Authenticity). Such transfer may not be by way of consignment or any other indirect transfer. The transferee of such one-time transfer must agree to comply with the terms of this Supplemental EULA, including the obligation not to further transfer this Supplemental EULA and Add-on Software.

**Termination.** Without prejudice to any other rights, Pacific Power Source may terminate this Supplemental EULA if You fail to comply with the terms and conditions of this Supplemental EULA. In such event, You agree to destroy all copies of the Add-on Software and all of its component parts.

**3. INTELLECTUAL PROPERTY RIGHTS.** All title and intellectual property rights in and to the Add-on Software (including but not limited to any images, photographs, animations, video, audio, music, text, and "applets" incorporated into the Add-on Software), the accompanying printed materials, and any copies of the Add-on Software are owned by Pacific Power Source or its suppliers. All title and intellectual property rights in and to the content that is not contained in the Add-on Software, but may be accessed through use of the Add-on Software, is the property of the respective content owners and may be protected by applicable copyright or other intellectual property laws and treaties. This Supplemental EULA grants You no rights to use such content. If this Add-on Software contains documentation that is provided only in electronic form, You may print one copy of such electronic documentation. You may not copy the printed materials accompanying the Add-on Software.

**4. BACKUP COPY.** After installation of one copy of the Add-on Software pursuant to this Supplemental EULA, You may keep the original media on which the Add-on Software was provided by Pacific Power Source solely for backup or archival purposes. If the original media is required to use the Add-on Software on the Device, You may make one copy of the Add-on Software solely for backup or archival purposes. Except as expressly provided in this

Supplemental EULA, You may not otherwise make copies of the Add-on Software or the printed materials accompanying the Add-on Software.

**5. EXPORT RESTRICTIONS.** You acknowledge that the Add-on Software is of U.S. origin. You agree to comply with all applicable international and national laws that apply to the Add-on Software, including the U.S. Export Administration Regulations, as well as end-user, end-use and destination restrictions issued by U.S. and other governments.

#### 6. APPLICABLE LAW.

This Supplemental EULA is governed by the laws of the State of California without regard to conflicts of law principles and in respect of any dispute which may arise hereunder, You hereby consent to the jurisdiction of the federal or state courts sitting in Orange County, California. You also agree to accept service of process by mail, and waive any jurisdictional or venue defenses otherwise available.

#### 7. LIMITED WARRANTY

LIMITED WARRANTY FOR ADD-ON SOFTWARE: Pacific Power Source warrants that the ADD-ON SOFTWARE will perform substantially in accordance with the accompanying materials for a period of ninety (90) days from the date of receipt. This Limited Warranty shall only apply to defects discovered in the ninety (90) day warranty period and as to any defects discovered after the ninety (90) day warranty period, THERE IS NO WARRANTY OF ANY KIND, to the fullest extent permissible by applicable law.

LIMITATION ON REMEDIES; NO CONSEQUENTIAL OR OTHER DAMAGES. Your exclusive remedy for any breach of this Limited Warranty is as set forth below. Except for any refund elected by Pacific Power Source, YOU ARE NOT ENTITLED TO ANY DAMAGES, INCLUDING BUT NOT LIMITED TO CONSEQUENTIAL DAMAGES, if the Add-on Software does not meet Pacific Power Source's Limited Warranty, and, to the maximum extent allowed by applicable law, even if any remedy fails of its essential purpose. The terms of Section 11 below ("Exclusion of Incidental, Consequential and Certain Other Damages") are also incorporated into this Limited Warranty.

EXCLUSIVE REMEDY. Pacific Power Source's entire liability and Your exclusive remedy shall be, at Pacific Power Source's option, (a) return of the price paid (if any) for the Add-on Software, or (b) repair or replacement of the Add-on Software that does not meet this Limited Warranty and that is returned to Pacific Power Source with proof of payment. You will receive the remedy elected by Pacific Power Source without charge, except that You are responsible for any expenses You may incur (e.g. cost of shipping the Add-on Software to Pacific Power Source). This Limited Warranty is void if failure of the Add-on Software has resulted from accident, abuse, misapplication, abnormal use or a virus. Any replacement Add-on Software will be warranted for the remainder of the original warranty period or thirty (30) days, whichever is longer.

**8. DISCLAIMER OF WARRANTIES.** THE LIMITED WARRANTY THAT APPEARS ABOVE IS THE ONLY EXPRESS WARRANTY MADE TO YOU AND IS PROVIDED IN LIEU OF ANY OTHER EXPRESS WARRANTIES (IF ANY) CREATED BY ANY DOCUMENTATION OR PACKAGING. EXCEPT FOR THE LIMITED WARRANTY AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, PACIFIC POWER SOURCE PROVIDE THE ADD-ON SOFTWARE AND SUPPORT SERVICES (IF ANY) *AS IS AND WITH ALL FAULTS,* AND HEREBY DISCLAIM ALL OTHER WARRANTIES AND CONDITIONS, EITHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, ANY (IF ANY) IMPLIED WARRANTIES, DUTIES OR CONDITIONS OF MERCHANTABILITY, OF FITNESS FOR A PARTICULAR PURPOSE, OF ACCURACY OR COMPLETENESS OR RESPONSES, OF RESULTS, OF WORKMANLIKE EFFORT, OF LACK OF VIRUSES AND OF LACK OF NEGLIGENCE, ALL WITH REGARD TO THE ADD-ON SOFTWARE, AND THE PROVISION OF OR FAILURE TO PROVIDE SUPPORT SERVICES. ALSO, THERE IS NO WARRANTY OR CONDITION OF TITLE, QUIET ENJOYMENT, QUIET POSSESSION, OR CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT WITH REGARD TO THE ADD-ON SOFTWARE. IN ANY JURISDICTION WHICH DOES NOT ALLOW THE EXCLUSION OR LIMITATION OF IMPLIED WARRANTIES, ANY IMPLIED WARRANTIES, TO THE EXTENT PERMITTED BY THE APPLICABLE LAWS OF ANY SUCH JURISDICTION, SHALL BE LIMITED TO THE TERM OF THIS AGREEMENT.

PACIFIC POWER SOURCE SPECIFICALLY DISCLAIMS ANY WARRANTY RELATING TO ANY TEST PARAMETERS, RESULTS OR USE OF THE ADD-ON SOFTWARE OR THE DOCUMENTATION IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE AND DOES NOT WARRANT THAT THE OPERATION OF THE ADD-ON SOFTWARE WILL BE UNINTERRUPTED OR ERROR FREE.

**9. WARNING.** PACIFIC POWER SOURCE PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL OF RELIABILITY SUITABLE FOR USE IN ANY MEDICAL DIAGNOSIS AND/OR TREATMENT OR AS CRITICAL COMPONENTS IN ANY LIFE SUPPORT SYSTEMS WHERE ANY FAILURE TO PERFORM CAN BE REASONABLY EXPECTED TO CAUSE INJURY OR DEATH.

RELIABILITY OF OPERATION OF THE ADD-ON SOFTWARE CAN BE IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY, COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE FITNESS, FITNESS OF COMPILERS AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION, INSTALLATION ERRORS, SOFTWARE AND HARDWARE COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR CONTROL DEVICES, TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR MISUSES, OR ERRORS ON THE PART OF THE USER OR APPLICATION DESIGNER. (ADVERSE FACTORS SUCH AS THESE ARE HEREAFTER COLLECTIVELY TERMED "SYSTEM FAILURES.")

ANY APPLICATION WHERE A SYSTEM FAILURE WOULD CREATE A RISK OF HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD NOT BE RELIANT SOLELY UPON ELECTRONIC MONITORING DUE TO THE RISK OF SYSTEM FAILURE. TO AVOID DAMAGE, INJURY OR DEATH, THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO PROTECT AGAINST SYSTEM FAILURES, INCLUDING BUT NOT LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS.

**10. EXCLUSION OF INCIDENTAL, CONSEQUENTIAL AND CERTAIN OTHER DAMAGES.** TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL PACIFIC POWER SOURCE OR ITS SUPPLIERS BE LIABLE FOR ANY SPECIAL, INCIDENTAL, INDIRECT, PUNITIVE OR CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFITS, LOST SAVINGS, OR CONFIDENTIAL OR OTHER INFORMATION, FOR BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, COST OF PROCUREMENT OF SUBSTITUTE TECHNOLOGY, FOR PERSONAL INJURY, FOR LOSS OF PRIVACY, FOR FAILURE TO MEET ANY DUTY INCLUDING OF GOOD FAITH OR OF REASONABLE CARE, FOR NEGLIGENCE, AND FOR ANY OTHER PECUNIARY OR OTHER LOSS WHATSOEVER) ARISING OUT OF OR IN ANY WAY RELATED TO THE USE OF OR INABILITY TO USE THE ADD-ON SOFTWARE, THE PROVISION OF OR FAILURE TO PROVIDE SUPPORT SERVICES, OR OTHERWISE UNDER OR IN CONNECTION WITH ANY PROVISION OF THIS SUPPLEMENTAL EULA, EVEN IN THE EVENT OF THE FAULT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY, BREACH OF CONTRACT OR BREACH OF WARRANTY OF PACIFIC POWER SOURCE OR ANY SUPPLIER, AND EVEN IF PACIFIC POWER SOURCE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

**11. LIMITATION OF LIABILITY AND REMEDIES.** NOTWITHSTANDING ANY DAMAGES THAT YOU MIGHT INCUR FOR ANY REASON WHATSOEVER (INCLUDING, WITHOUT LIMITATION, ALL DAMAGES REFERENCED ABOVE AND ALL DIRECT OR GENERAL DAMAGES), THE ENTIRE LIABILITY OF PACIFIC POWER SOURCE UNDER ANY PROVISION OF THIS SUPPLEMENTAL EULA AND YOUR EXCLUSIVE REMEDY FOR ALL OF THE FOREGOING (EXCEPT FOR ANY REMEDY OF REPAIR OR REPLACEMENT ELECTED BY PACIFIC POWER SOURCE WITH RESPECT TO ANY BREACH OF THE LIMITED WARRANTY) SHAL BE LIMITED TO THE GREATER OF THE AMOUNT ACTUALLY PAID BY YOU FOR THE ADD-ON SOFTWARE. THE FOREGOING LIMITATIONS, EXCLUSIONS AND DISCLAIMERS (INCLUDING SECTIONS 7, 8, AND 9 ABOVE) SHALL APPLY TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, EVEN IF ANY REMEDY FAILS ITS ESSENTIAL PURPOSE. **12. INDEMNITY**. You unequivocally and expressly agree to defend and indemnify Pacific Power Source against any claims, costs, liabilities or expenses ("Claims") incurred or suffered by Pacific Power Source relating to the physical injury to or death of any person, or damage to or loss or destruction of any tangible property, or infringement claims arising out of, as a result of, or in connection with Your use of the ADD-ON Software or this SUPPLEMENTAL EULA irrespective of causation or fault, except that the foregoing indemnity obligation shall not apply to the extent such Claim arises solely from the GROSS NEGLIGENCE OR willful misconduct of Pacific Power Source. In the event You fail to timely defend and indemnify Pacific Power Source for any Claim, Pacific Power source will have the right to defend itself and recover all costs associated therewith from You, including attorney's fees, expert fees and costs, in addition to any indemnity payments made to settle. In the event of a Claim, Pacific Power Source shall have the right to direct the litigation, approve of counsel and approve of any settlement with respect to the Claim. Pacific Power SOURCE will use best efforts to promptly notify You of any Claims. Pacific Power Source shall provide assistance to You in any defense undertaken by You by providing, if applicable, witnesses, documentary or other evidence and other assistance, as may be reasonably requested by You in connection with its defense, provided that the out-of-pocket cost of such assistance will be borne by You.

**13. ENTIRE AGREEMENT.** This SUPPLEMENTAL EULA (including any addendum or amendment to this Supplemental EULA which is included with the Add-on Software) is the entire (fully integrated) agreement between You and Pacific Power Source relating to the Add-on Software and the support services (if any) and they supersede all prior or contemporaneous oral or written communications, proposals and representations with respect to the Add-on Software or any other subject matter covered by this Supplemental EULA. To the extent the terms of any Pacific Power Source website or other policies conflict with the terms of this Supplemental EULA, the terms of this Supplemental EULA shall control.

14. GENERAL. (a) This Supplemental EULA is severable, such that the invalidity of any term of this Agreement shall not affect the validity of any other term. Any such invalid term shall be subject to partial enforcement to the maximum extent permitted under applicable law. (b) This Supplemental EULA may not be modified or amended except by a written instrument setting forth such modification or amendment which is signed by the parties and specifically states that it modifies or amends this Supplemental EULA. (c) The headings contained in this Supplemental EULA are for convenience only and shall not be deemed to be a substantive part of this Supplemental EULA; (d) This Supplemental EULA shall inure to the benefit of and be binding upon the parties, their successors and assigns. Except as set forth herein, this Supplemental EULA may not be assigned by either party without the prior written consent of the other party. (e) This Supplemental EULA will be deemed to have been prepared by each of the parties jointly and shall not be interpreted against either party on the ground that such party drafted the Supplemental EULA or caused it to be prepared. (f) In the event of a conflict between the Supplemental EULA and any other Software related agreement between You and Pacific Power Source, this Supplemental EULA shall control. (g) If any action is brought by either party to this Supplemental EULA against the other regarding the subject matter hereof, the prevailing party shall be entitled to recover, in addition to any relief granted, reasonable attorney fees, expert fees and court costs. (h) Any waiver of any kind by either Party of a breach of this Supplemental EULA shall not operate or be construed as a waiver of any subsequent breach.

Should you have any questions concerning this Supplemental EULA, or if you desire to contact Pacific Power Source for any reason, please contact:

### Pacific Power Source, Inc.,

17692 Fitch Irvine, California 92614 Tel: (800) 854-2433 or +1-949-251-1800 Email: support@pacificpower.com

# TABLE OF CONTENTS

| 1 | Intro                              | oduct | ion                                                                      |     |  |  |
|---|------------------------------------|-------|--------------------------------------------------------------------------|-----|--|--|
| 2 |                                    |       |                                                                          |     |  |  |
|   | 3 Software Installation            |       |                                                                          |     |  |  |
| 4 |                                    |       |                                                                          |     |  |  |
|   |                                    |       |                                                                          |     |  |  |
|   | 5 MIL-STD-704F Test Manager Window |       |                                                                          |     |  |  |
| 6 |                                    |       | 704F Test Sequence Windows                                               |     |  |  |
|   | 6.1                                | -     | ctive Window                                                             |     |  |  |
|   | 6.2                                |       | erence Window                                                            |     |  |  |
|   | 6.3                                |       | erence Window (continued)                                                |     |  |  |
|   | 6.4                                |       | Value/Comment Window                                                     |     |  |  |
|   | 6.5                                | -     | Result Window                                                            |     |  |  |
| _ | 6.6                                |       | Report Window                                                            |     |  |  |
| 7 |                                    | •     | orts                                                                     |     |  |  |
|   | 7.1                                |       | plate Files                                                              |     |  |  |
|   | 7.2                                |       | rt Entries                                                               |     |  |  |
|   | 7.3                                |       | omizing Test Reports                                                     |     |  |  |
|   | 7.3.2                              |       | Report Template Headers and Footers                                      |     |  |  |
|   | 7.3.2                              | -     | Customizing Report Content using VB Script Steps                         |     |  |  |
|   | 7.3.3                              |       | Editing existing Reports                                                 |     |  |  |
| 8 |                                    |       | 704F Test Application Considerations                                     |     |  |  |
|   | 8.1                                |       | sition Time Setting – Most xVF Tests                                     |     |  |  |
|   | 8.2                                |       | nod xxx101 – Load Measurements                                           |     |  |  |
|   | 8.2.2                              |       | Additional Measurement Equipment                                         |     |  |  |
|   | 8.2.2                              |       | Test Setups xxx101                                                       |     |  |  |
|   | 8.2.3                              |       | Measurement Data Tables xxx101                                           |     |  |  |
|   | 8.3                                |       | nod xxx106 - Voltage Distortion Spectrum Tests                           |     |  |  |
|   | 8.3.2                              |       | Test Setups xxx106                                                       |     |  |  |
|   | 8.3.2                              |       | Alternative Setup: UPC Analog Input                                      |     |  |  |
|   | 8.3.3                              |       | Measurements xxx106                                                      |     |  |  |
|   | 8.4                                |       | nod xxx107 - Total Voltage Distortion Tests                              |     |  |  |
|   | 8.4.1                              |       | Test Setups xxx107                                                       |     |  |  |
|   | 8.4.2                              |       | Measurements                                                             |     |  |  |
|   | 8.5                                |       | nod xxx108 - DC Voltage Offset Tests                                     |     |  |  |
|   | 8.5.2                              |       | Test Setup – xxx108                                                      |     |  |  |
|   | 8.6                                |       | and HDC DC Power Tests                                                   |     |  |  |
|   | 8.6.2                              |       | DCR Option module                                                        |     |  |  |
| _ | 8.6.2                              |       | DC Power Group Test Setup                                                |     |  |  |
| 9 |                                    |       | 704F Test Sequence Coverage                                              |     |  |  |
|   | 9.1                                |       | er Group Coverage                                                        |     |  |  |
|   | 9.2                                |       | Coverage Summary                                                         |     |  |  |
|   | 9.3                                |       | Sequence Files by Power Group Tables                                     |     |  |  |
|   | 9.4                                |       | Level and Duration Tables                                                |     |  |  |
|   | 9.4.1                              |       | SAC Test Details by Test Number (Single Phase, 115V, 400 Hz)             |     |  |  |
|   | 9.4.2                              |       | TAC Test Details by Test Number (Three Phase, 115V, 400 Hz)              |     |  |  |
|   | 9.4.3                              |       | SVF Test Details by Test Number (Single Phase, 115V, Variable Frequency) |     |  |  |
|   | 9.4.4                              |       | TVF Test Details by Test Number (Three Phase, 115V, Variable Frequency)  |     |  |  |
|   | 9.4.5                              |       | SXF Test Details by Test Number (Single Phase, 115V, 60 Hz)              |     |  |  |
|   | 9.4.6                              |       | LDC 28VDC                                                                |     |  |  |
|   | 9.4.7                              | 7     | HDC 270VDC                                                               | 122 |  |  |

| LIST OF TABLES                                                      | PAGE |
|---------------------------------------------------------------------|------|
| Table 1: Method xxx101 Measurement Data Table - Single Phase        | 35   |
| Table 2: Method xxx101 Measurement Data Table - Three Phase         | 35   |
| Table 3: Method xxx101 Measurement Data Table - DC                  | 36   |
| Table 4: Method xxx106 Measurement Data Table - Single Phase        | 40   |
| Table 5: Method xxx107 Distortion Table                             | 41   |
| Table 6: MIL-STD-704F Option Power Group Coverage                   | 48   |
| Table 7: MIL-STD-704F Test Coverage Summary Table – AC Power Groups | 49   |
| Table 8: MIL-STD-704F Test Coverage Summary Table – DC Power Groups | 50   |
| Table 9: Section Coverage Table - Power Group - SAC                 | 52   |
| Table 10: Section Coverage Table - Power Group – TAC                | 54   |
| Table 11: Section Coverage Table - Power Group - SVF                | 57   |
| Table 12: Section Coverage Table - Power Group - TVF                | 59   |
| Table 13: Section Coverage Table - Power Group – SXF                | 61   |
| Table 14: Section Coverage Table – LDC-28VDC                        | 61   |
| Table 15: Section Coverage Table – HDC-270VDC                       | 62   |

| LIST OF FIGURES                                                         | PAGE |
|-------------------------------------------------------------------------|------|
| Figure 1: Adding Custom Report Headers to Report Template using MS Word | 27   |
| Figure 2: Transition Time Control Setting in xVF Test Files             | 32   |
| Figure 3: Method xxx101 Single Phase UUT Test Setup                     | 33   |
| Figure 4: Method xxx101 Three Phase UUT Test Setup                      | 34   |
| Figure 5: Method xxx106 Single Phase UUT Test Setup                     | 37   |
| Figure 6: Method xxx106 Three Phase UUT Test Setup                      | 38   |
| Figure 7: Method xxx106 Test Setup Using Auxiliary Input                |      |
| Figure 8: Method xxx107 Test Setup - Three Phase                        | 42   |
| Figure 9: Method xxx108 DC Offset Test Setup - Three Phase              | 45   |
| Figure 10: Power Source and DCR module connection                       | 47   |
| Figure 11: Voltage Transition Pulse Details                             | 68   |
| Figure 12: Repetitive Voltage transients.                               | 68   |
| Figure 13: Voltage Transition Pulse Details                             | 79   |
| Figure 14: Repetitive Voltage transients.                               | 79   |
| Figure 15: Voltage Transition Pulse Details                             | 90   |
| Figure 16: Repetitive Voltage transients.                               | 90   |
| Figure 17: Voltage Transition Pulse Details                             | 101  |
| Figure 18: Repetitive Voltage transients.                               | 101  |
| Figure 19: Voltage Transition Pulse Details - SXF                       | 110  |
| Figure 20: Repetitive Voltage transients.                               | 111  |

# 1 Introduction

Pacific Power Source has developed various test sequence packages to assist test engineers in performing standard military or industrial compliance tests. The MIL-STD-704F test sequence option is one of many options associated with Test Manager that Pacific Power Source offers.

The MIL-STD-704F test sequence option is based on the Mil-Std-704 Department of Defense Interface Standard for Aircraft Electronic Power Characteristics, and consists of test sequences for single-phase and three-phase equipment in five AC power categories and two DC categories. The Pacific Power Source Inc. MIL-STD-704F option covers all five AC power groups and two DC test groups contained in the test standard.

| Power<br>Group   | Description                                                  | Nominal<br>Voltage | Nominal<br>Frequency | Phase Modes  |
|------------------|--------------------------------------------------------------|--------------------|----------------------|--------------|
| SAC              | Single-Phase, 400 Hz Constant Frequency, 115 V               | 115Vrms L-N        | 400Hz                | Single Phase |
| TAC              | Three-Phase, 400 Hz Constant Frequency,<br>115 V             | 115Vrms L-N        | 400Hz                | Three Phase  |
| SVF              | Single-Phase, Variable Frequency, 115 V                      | 115Vrms L-N        | 360 – 800Hz          | Single Phase |
| TVF              | Three-Phase, Variable Constant Frequency,<br>115 V           | 115Vrms L-N        | 360 – 800Hz          | Three Phase  |
| SXF              | Single-Phase, 60 Hz Constant Frequency, 115<br>V             | 115Vrms L-N        | 60Hz                 | Single Phase |
| Table            | Description                                                  |                    |                      | Phase Modes  |
| LDC <sup>1</sup> | 28VDC utilization equipment MIL-STD-704<br>compliance tests  | 28VDC              |                      | n/a          |
| HDC <sup>2</sup> | 270VDC utilization equipment MIL-STD-704<br>compliance tests | 270VDC             |                      | n/a          |

A test report in Rich Text Format (.rtf) is automatically generated for each test sequence performed in UPC Test Manger. Test steps, parameter measurements, waveforms and pass/fail test results are recorded as appropriate in the test report. Test engineers can also modify any of the pre-built test sequences and reports to better suit their needs.

This manual is neither a handbook to MIL-STD-704F compliance testing nor a step-by-step tutorial for operation of UPC Studio and UPC Test Manager. It is assumed that the test engineer is familiar with MIL-STD-704 test procedures and setups as well as UPC studio and UPC Test Manager Operation before using this MIL-STD-704F test sequence option. Check the Naval Air Systems Command website at http://www.navair.navy.mil for additional information on electronics test standards.

For UPC studio and UPC Test Manager Operation, please refer to the Pacific Power Source UPC Studio and UPC Test Manager Operation manuals.

Other test equipment in addition to a Pacific Power Source AC Source may be required for certain tests while using the MIL-STD-704F test sequence option. These additional requirements are detailed in Section 7, Test Sequence Coverage.

<sup>&</sup>lt;sup>1</sup> LDC Power group testing requires a 3 Phase AMX model AC power source and the DCR600-20 Option which is sold separately.

<sup>&</sup>lt;sup>2</sup> HLDC Power group testing requires a 3 Phase AMX model AC power source and the DCR600-20 Option which is sold separately.

# 2 Hardware Requirements

Pacific Power Source units must meet the following requirements to perform the MIL-STD-704F compliance tests:

- Single-phase test: the power source must have dual-range capability: either single-phase/transformer coupled or split-phase output forms.
- Three-phase test: the power source must have dual-range capability: direct output mode and transformer coupled output mode.
- For LDC and HDC tests:
  - A DCR module is required to perform DC test (Option sold separately from Mil-Std 704F Library.)
  - An AMX Series 3 Phase output Linear AC Power Source model is recommended for DC tests using the DCR Option.

The amount of power or current required will vary according to the demands of the load. For detailed output capabilities on each power source model, refer to the Pacific Power Source Operation Manuals for the preferred power source units.

# **3** Software Installation

The MIL-STD-704F test sequence is distributed as a single install program. The following executable file constitutes the MIL-STD-704F Option package:

149101-MIL-STD-704F Test Suite v1.0.exe

Note: The version number "v1.0" may vary as new updates are released.

Test Sequence software operation requires that Pacific's UPC Manager and Test Manager Software products must already be installed on the target PC. During installation, Pacific Power Source's test sequence files will be extracted into a default directory:

C:\Pacific Power Source\UPC Manager\Test Manager

If the setup installer cannot locate UPC Manager, a dialog appears asking test engineers to browse to the UPC Manager.exe application as shown below.

| Browse for Fol  | der                                    | ×   |
|-----------------|----------------------------------------|-----|
| Select folder o | ontaining UPC Manager EXE application: |     |
| ⊿ 🏭             | Windows7_OS (C:)                       | *   |
| ⊳               | 📙 Intel                                |     |
| ⊳               | KPCMS                                  |     |
|                 | 🍌 mfg                                  | =   |
| ⊳               | 📙 MSOCache                             | -   |
| ⊳               | Pacific Power Source                   |     |
| ⊳               | ]] PerfLogs                            |     |
| ⊳               | 📔 Program Files                        |     |
| ⊳               | 퉬 ProgramData                          |     |
|                 |                                        |     |
|                 |                                        | -   |
|                 |                                        |     |
|                 | OK Can                                 | cel |
|                 |                                        |     |

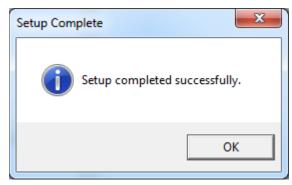
To install the MIL-STD-704F Option test sequences:

• Double click the executable file:

149101-MIL-STD-704F Test Suite v1.0.exe

The Setup Wizard window appears as shown below.

|                             |                                                                            | Setup Title and Version      |
|-----------------------------|----------------------------------------------------------------------------|------------------------------|
|                             |                                                                            |                              |
|                             |                                                                            |                              |
| 觉 Setup · 149101-MIL-STD-70 | 04F Test Suite v1.0                                                        |                              |
|                             | Welcome to the 149101-MIL-STD-                                             |                              |
|                             | 704F Test Suite Setup Wizard.                                              | → Setup Title                |
|                             | This will install 149101-MIL-STD-704F Test Suite v1.0<br>on your computer. | Det Number News Mr.          |
|                             | It is recommended that you close all other                                 | → Part Number, Name, Version |
|                             | applications before continuing.                                            |                              |
|                             | Click Next to continue or Cancel to exit Setup.                            |                              |
|                             |                                                                            |                              |
|                             |                                                                            |                              |
|                             |                                                                            |                              |
|                             |                                                                            |                              |
|                             |                                                                            |                              |
|                             | Next > Cancel                                                              |                              |


• Click Next button to get to the License Agreement window.

| Setup - 149101-MIL-STD-704F Test Suite v1.0                                                                                                                       |  |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| License Agreement<br>Please read the following important information before continuing.                                                                           |  |  |  |  |  |  |  |  |
| Please read the following License Agreement. You must accept the terms of this agreement<br>before continuing with the installation.                              |  |  |  |  |  |  |  |  |
| IMPORTANT NOTICE TO USER<br>THIS IS A CONTRACT. BEFORE YOU CLICK ON THE "NEXT" BUTTON<br>AND COMPLETE THE INSTALLATION PROCESS, CAREFULLY READ THIS<br>AGREEMENT. |  |  |  |  |  |  |  |  |
| BY CLICKING THE "NEXT" BUTTON, YOU CONSENT TO THE TERMS OF<br>THIS AGREEMENT AND YOU AGREE TO BE BOUND BY THIS<br>AGREEMENT.                                      |  |  |  |  |  |  |  |  |
| IF YOU DO NOT WISH TO BECOME A PARTY TO THIS AGREEMENT AND                                                                                                        |  |  |  |  |  |  |  |  |
| I accept the agreement.                                                                                                                                           |  |  |  |  |  |  |  |  |
| <pre></pre>                                                                                                                                                       |  |  |  |  |  |  |  |  |

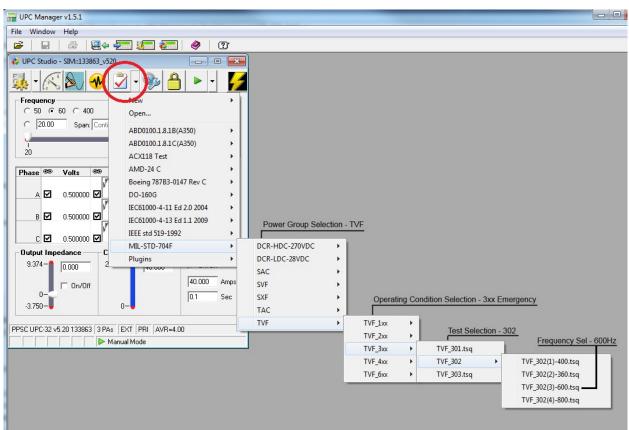
- Read the License Agreement and check "I accept the agreement" to continue.
- Click **Next** button to get to Ready to install window as shown below.

| Setup - 149101-MIL-STD-704F Test Suite v1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ready to Install<br>Setup is now ready to begin installing 149101-MIL-STD-704F Test Suite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| The files listed below will be installed on your computer. Click Install to complete the<br>installation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| C:\Pacific Power Source\UPC Manager\Test Reports\Templates\MIL-STD 704 Template<br>C:\Pacific Power Source\UPC Manager\Test Reports\Templates\MIL-STD 704 101 Tem<br>C:\Pacific Power Source\UPC Manager\Test Manager\MIL-STD-704F\SAC\SAC_1xx\S.<br>C:\Pacific Power Source\UPC Manager\Test Manager\MIL-STD-704F\SAC\SAC_1xx\S. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| < Back Cancel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

- Click Install button to finish the installation.
- Depending on the size of the installed file, this process may take some amount of time. No activity is visible on the PC screen during this time but rest assured the installation is progressing in the back ground.
- Wait till the dialog box shown below occurs to indicate the installation process has completed and click OK to complete the setup process.



# 4 Software Removal


To uninstall MIL-STD-704F test sequence files or packages:

- Navigate to the directory where the test sequence files or folder are saved.
- Delete the desired files or folders from the directory.

Note: There are no Windows<sup>®</sup> System files or registration entries associated with the test sequences so no uninstall program is required to remove the option files from a PC.

# 5 MIL-STD-704F Test Manager Window

After the test sequence software is successfully installed, the individual test sequences are accessed from the Test Manager menu in UPC Studio as shown.



MIL-STD-704F test sequences are grouped based on categories of equipment defined in the test standard: SAC, TAC, SVF, TVF and SXF. The individual test sequence files are named using the following naming convention:

| Power Group                  | Aircraft Electrical<br>Operating<br>Condition | Test Number   | AC source coupling                                                     | File Extension |
|------------------------------|-----------------------------------------------|---------------|------------------------------------------------------------------------|----------------|
| NNN_                         | D                                             | DD            | Optional                                                               | .tsq           |
| SAC, SVF, TAC,<br>TVF or SXF | 1 through 6                                   | 01 through 10 | Direct Coupled     FORM2 Split Phase mode     XFMR Transformer coupled |                |

Thus, file SAC\_101.tsq is the test file for single phase, fixed frequency, normal operation, test 01 and is implemented using the low voltage range of the AC Source (Direct coupled output).

Note: While operation of individual test sequences is described in this document, normally it would be expected that the test engineers would use these test sequences to build a test plan. See Pacific Power Source UPC Test Manager Operation Manual for test plan detail.

# 6 MIL-STD-704F Test Sequence Windows

A typical test sequence is organized in five windows/ tabs: **Objective**, **Preferences**, **Step Value / Comment**, **Step Result**, **and Test Report**. The content and purpose of these windows are described in the following sections. For more definition of each field see Pacific Power Source UPC Test Manager Operation Manual.

### 6.1 Objective Window

In the **Objective** window, illustrated below, the MIL-STD-704F section number, power group, operating condition, test purpose and time period, and parameter setup values are described in detail.

| Test Sequence - SIM::141517_v                       | 520 - TVF_102.tsq                                  |                                                            |                   |            |   |  |  |  |
|-----------------------------------------------------|----------------------------------------------------|------------------------------------------------------------|-------------------|------------|---|--|--|--|
| bjective Preferences Step Valu                      | e/Comment Step Result                              |                                                            |                   |            |   |  |  |  |
| STANDARD: MIL-STD 704 Rev F - TVF102                |                                                    |                                                            |                   |            |   |  |  |  |
| STANDARD. WILL-STD 704 P                            | VEV F - IVFIUZ                                     |                                                            |                   |            |   |  |  |  |
| POWER GROUP: TVF - Thi                              | ee Phase, Variable Free                            | quency, 115V                                               |                   |            |   |  |  |  |
| AIRCRAFT ELECTRICAL OF                              |                                                    | Normal                                                     |                   |            |   |  |  |  |
| AIRCRAFT ELECTRICAL OF                              | ERATING CONDITION.                                 | Normai                                                     |                   |            |   |  |  |  |
| PARAMETER: Steady Sta                               | te Limits for Voltage, Inc                         | cluding Unbalance and Freq                                 | luency            |            | - |  |  |  |
| NOTES:                                              |                                                    |                                                            |                   |            |   |  |  |  |
| This test procedure is used t                       | o verify that three phase, 1                       | 15 Volt, variable frequency                                |                   |            |   |  |  |  |
|                                                     |                                                    | ecified performance when provi                             |                   |            |   |  |  |  |
|                                                     |                                                    | tate (NLSS) limits and the Nor                             | rmal High         |            |   |  |  |  |
| Steady State (NHSS) limits a                        | as specified in the applicat                       | ble edition(s) of MIL-STD-704.                             |                   |            |   |  |  |  |
| Test Conditions:                                    |                                                    |                                                            |                   |            |   |  |  |  |
|                                                     | I-                                                 |                                                            |                   |            |   |  |  |  |
| Test Condition Voltage<br>Balanced Nominal Voltages | Frequenc                                           | y Time at Test Condition                                   | ·                 |            |   |  |  |  |
| A 115 V                                             | 360 Hz                                             | 30 min                                                     |                   |            |   |  |  |  |
| B 115V                                              | 400 Hz                                             | 30 min                                                     |                   |            |   |  |  |  |
| C 115 V                                             | 600 Hz                                             | 30 min                                                     |                   |            |   |  |  |  |
| D 115 V                                             | 800 Hz                                             | 30 min                                                     |                   |            |   |  |  |  |
| Balanced Normal Low Steady S                        | State Voltages                                     |                                                            |                   |            |   |  |  |  |
| E 108 V                                             | 360 Hz                                             | 30 min                                                     |                   |            |   |  |  |  |
| F 108 V                                             | 400 Hz                                             | 30 min                                                     |                   |            |   |  |  |  |
| G 108 V                                             | 440 Hz                                             | 5 min                                                      |                   |            |   |  |  |  |
| H 108 V                                             | 480 Hz                                             | 5 min                                                      | I                 |            |   |  |  |  |
| Idle                                                | Step                                               | Total Elapsed                                              | Remaining         |            |   |  |  |  |
| • 🖞 +E +E   🛱 🌚   📴                                 | All 145: 🗵                                         | 10:35:00.0000 00:00:00.000                                 | 0 10:35:00.0000   |            |   |  |  |  |
| Step Description                                    | Value                                              | Comment                                                    |                   | <br>Result |   |  |  |  |
|                                                     |                                                    | Source Connect UUT to AC Sou                               |                   |            |   |  |  |  |
| 5 🕨 Steady State                                    | Va=115.0 Vb=115.0 Vc=115.0 F                       | =400.0 Steady State Voltage Fr                             | equency           |            |   |  |  |  |
|                                                     | Output Enable                                      | Change Output Enable (                                     | (Close Output Rel |            |   |  |  |  |
|                                                     | Perform the following steps prior                  |                                                            |                   |            |   |  |  |  |
|                                                     | Va=115.0 Vb=115.0 Vc=115.0 F                       |                                                            |                   |            |   |  |  |  |
|                                                     | Vrms,Irms,Freq                                     | Test Period Data Log - 3                                   | 30 mins.          |            |   |  |  |  |
|                                                     | Perform the following steps prior                  | -                                                          | -                 |            |   |  |  |  |
|                                                     | Va=115.0 Vb=115.0 Vc=115.0 F                       |                                                            |                   |            |   |  |  |  |
| 17 V                                                | Vrms,Irms,Freq                                     | Test Period Data Log - 3                                   | 30 mins.          |            |   |  |  |  |
|                                                     | Perform the following steps prior                  | •                                                          |                   |            |   |  |  |  |
|                                                     | Va=115.0 Vb=115.0 Vc=115.0 F<br>Vrms.lrms.Freg     | Test Period Data Log - 3                                   |                   |            |   |  |  |  |
|                                                     | Vrms,rms,Freq<br>Perform the following steps prior | -                                                          | ou mins.          |            |   |  |  |  |
| 16 🕐 User Promot                                    | a criomi the following steps phot                  | to pressi OUT mestall rest                                 |                   |            |   |  |  |  |
|                                                     | Va=1150Vb=1150Vc=1150P                             | =800.0 TVE102 - Test Condition                             | <u>ا</u> ل        |            |   |  |  |  |
| 17 🕨 Steady State                                   | Va=115.0 Vb=115.0 Vc=115.0 F<br>Vrms.lrms.Freg     | =800.0 TVF102 - Test Condition<br>Test Period Data Log - 3 |                   |            |   |  |  |  |
| 17 > Steady State<br>18 Meter                       |                                                    |                                                            |                   |            |   |  |  |  |

## 6.2 Preference Window

In the Preferences window shown below, "Allow Edit" is checked by default; The Pacific Power Source part number and version associated with the test sequence are indicated.



The Report Template used with active test sequence is named "*MIL-STD-704 Template*", and is automatically loaded from a default directory: C:\Pacific Power Source\UPC Manager\Test Reports\Templates;

If a "\*" appears at the end of the template file name (i.e. *MIL-STD-704 Template\*),* It means data has been collected during a test and the test report has been updated but the report file has NOT yet been saved.

|                                                                                  | Dijective Preferences Step Value/Comment Step Result        |                                                      |                                                              |                                       |  |  |  |  |
|----------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------|---------------------------------------|--|--|--|--|
|                                                                                  | Allow Edit Password: Part Number: 149101-092 Version: 1.0.0 |                                                      |                                                              |                                       |  |  |  |  |
| ile Path: C:\PPS-SW\UPC Manager\Test Manager\MIL-STD704F\TVF\TVF_1xx\TVF_102.tsq |                                                             |                                                      |                                                              |                                       |  |  |  |  |
|                                                                                  | Updated: 02/19/2013 12:03:                                  |                                                      |                                                              |                                       |  |  |  |  |
| Jse                                                                              | Programs: 90-99                                             | Report Templat                                       | e: MIL-STD 704 Template                                      | Loz                                   |  |  |  |  |
|                                                                                  | Limit Value                                                 |                                                      | ency Span                                                    |                                       |  |  |  |  |
|                                                                                  | Frequency Min 300.                                          |                                                      |                                                              |                                       |  |  |  |  |
|                                                                                  | Frequency Max 1000.                                         | .00                                                  |                                                              |                                       |  |  |  |  |
|                                                                                  |                                                             | 00 0.00-600.00 Vrms                                  |                                                              |                                       |  |  |  |  |
|                                                                                  | Voltage Max 400.                                            | 00                                                   |                                                              |                                       |  |  |  |  |
|                                                                                  |                                                             |                                                      |                                                              |                                       |  |  |  |  |
|                                                                                  |                                                             |                                                      |                                                              |                                       |  |  |  |  |
|                                                                                  | Idle                                                        | Step Tota                                            | I Elapsed Remaining                                          |                                       |  |  |  |  |
|                                                                                  |                                                             | All 145: 10:35                                       | 00.0000 00:00:0000 10:35:00.0000                             |                                       |  |  |  |  |
|                                                                                  | 144 🕫 😫 🚥 🖾                                                 | 1                                                    |                                                              | · · · · · · · · · · · · · · · · · · · |  |  |  |  |
|                                                                                  | ep Description                                              | Value                                                | Comment                                                      | Result                                |  |  |  |  |
| •                                                                                | 1 🤣 Script                                                  | Check report and set report format flags             | Initialize Report format flags.                              |                                       |  |  |  |  |
| /                                                                                | 2 🛒 User Input                                              | UUT Part Number, UUT Serial Number, Co               | -                                                            |                                       |  |  |  |  |
| /                                                                                | 3 🌉 Control                                                 | Transition Time,Output Enable,CSC                    | Open Output Relays, CSC ON, Ttr = 40 sec                     |                                       |  |  |  |  |
| <u> </u>                                                                         | 4 🥨 User Prompt                                             | Connect UUT to the AC Power Source                   |                                                              |                                       |  |  |  |  |
| /                                                                                | 5 ▶ Steady State                                            | Va=115.0 Vb=115.0 Vc=115.0 F=400.0                   | Steady State Voltage Frequency                               |                                       |  |  |  |  |
| •                                                                                | 6 🔼 Control                                                 | Output Enable                                        | Change Output Enable (Close Output Rel                       |                                       |  |  |  |  |
| ~                                                                                | 7 🥨 User Prompt                                             | Perform the following steps prior to pressin.        |                                                              |                                       |  |  |  |  |
| •                                                                                | 8 🕨 Steady State                                            | Va=115.0 Vb=115.0 Vc=115.0 F=360.0                   | TVF102 - Test Condition A                                    |                                       |  |  |  |  |
| ✓<br>✓                                                                           | 9 🕂 Meter                                                   | Vrms,Irms,Freq                                       | Test Period Data Log - 30 mins.                              |                                       |  |  |  |  |
| ~                                                                                | 10 Q User Prompt                                            | Perform the following steps prior to pressi.         |                                                              |                                       |  |  |  |  |
| ~                                                                                | 11 Note Steady State                                        | Va=115.0 Vb=115.0 Vc=115.0 F=400.0                   | TVF102 - Test Condition B                                    |                                       |  |  |  |  |
| ~<br>~                                                                           | 12 K Meter<br>13 😲 User Prompt                              | Vrms,Irms,Freq                                       | Test Period Data Log - 30 mins.                              |                                       |  |  |  |  |
| ~                                                                                |                                                             | Perform the following steps prior to pressi.         |                                                              |                                       |  |  |  |  |
| ~                                                                                | 14 🕨 Steady State<br>15 \land Meter                         | Va=115.0 Vb=115.0 Vc=115.0 F=600.0<br>Vrms.lrms.Freq | TVF102 - Test Condition C<br>Test Period Data Log - 30 mins. |                                       |  |  |  |  |
| •                                                                                | 16 😲 User Prompt                                            | Perform the following steps prior to pressi          | _                                                            |                                       |  |  |  |  |
| •                                                                                | 17 Steady State                                             | Va=115.0 Vb=115.0 Vc=115.0 F=800.0                   | TVF102 - Test Condition D                                    |                                       |  |  |  |  |
| •                                                                                | 18 K Meter                                                  | Vrms.lrms.Freq                                       | Test Period Data Log - 30 mins.                              |                                       |  |  |  |  |
| •                                                                                | 19 😲 User Prompt                                            | Perform the following steps prior to pressi          | -                                                            |                                       |  |  |  |  |
| ~                                                                                | 20 Steady State                                             | Va=108.0 Vb=108.0 Vc=108.0 F=360.0                   | TVF102 - Test Condition E                                    |                                       |  |  |  |  |
| ·<br>•                                                                           | 21 K Meter                                                  | Vrms,Jrms,Freg                                       | Test Period Data Log - 30 mins.                              |                                       |  |  |  |  |
| <b>v</b>                                                                         | 22 😲 User Prompt                                            | Perform the following steps prior to pressi          | -                                                            |                                       |  |  |  |  |
| ~                                                                                | 23 Steady State                                             | Va=108.0 Vb=108.0 Vc=108.0 F=400.0                   | TVF102 - Test Condition F                                    |                                       |  |  |  |  |
| •                                                                                | 24 K Meter                                                  | Vrms,Irms,Freq                                       | Test Period Data Log - 30 mins.                              |                                       |  |  |  |  |
|                                                                                  | 25 🕐 User Prompt                                            | Perform the following steps prior to pressi          |                                                              |                                       |  |  |  |  |
| ~                                                                                | 26 > Steady State                                           | Va=108.0 Vb=108.0 Vc=108.0 F=440.0                   | TVF102 - Test Condition G                                    |                                       |  |  |  |  |
| <ul> <li></li> </ul>                                                             | 27 🕂 Meter                                                  | Vrms,Irms,Freq                                       | Test Period Data Log - 5 mins.                               |                                       |  |  |  |  |
| _                                                                                |                                                             |                                                      | -                                                            |                                       |  |  |  |  |
| •                                                                                | 28 😲 User Prompt                                            | Perform the following steps prior to pressi          | . UUI Hestart Lest                                           |                                       |  |  |  |  |

### 6.3 Preference Window (continued)

"Use program" is set to use UPC programs 90-99 as default value; a set of suitable minimum and maximum values for each parameter are defined in the Limits table. "File path" and "Last update" information are updated each time when the test sequence is activated.

The MIL-STD-704F test sequences are created to allow test engineers to modify test sequence settings based on their preferences and needs, as well as to keep track of how many times a file has been changed and saved. Each time a test sequence file is modified and saved under the original name, the 3<sup>rd</sup> digit of the version number, appearing in the **Preference** window, will increment by 1( i.e. x.x.1). In the illustration below, the version 1.0.2 means the active test sequence file has been modified and saved twice.

| 💐 Test Sequence - SIM          | 7 Test Sequence - SIM::141517_v520 - SAC_303.tsq                                                                                                                                            |                   |                         |                          |                            |      |  |  |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------|--------------------------|----------------------------|------|--|--|
| Objective Preferences          | Objective Preferences Step Value/Comment Step Result                                                                                                                                        |                   |                         |                          |                            |      |  |  |
| File Path: C:\PPS-SW\L         | Allow Edit Password:     Part Number: 149101-017 Version: 1.0.2     File Path: C:\PPS-SW\UPC Manager\Test Manager\MIL-STD704F\SAC\SAC_3xx\SAC_303.tsq     Last Undeted: 02/14/2013 15:50:50 |                   |                         |                          |                            |      |  |  |
| Use Programs: 90-99            |                                                                                                                                                                                             |                   | Report Template: MIL-ST | D 704 Template           |                            | Load |  |  |
| Limit                          | Value                                                                                                                                                                                       | Range             | 🗸 🔽 Lock Frequency Span |                          |                            |      |  |  |
| Frequency Min<br>Frequency Max | 15 U-1 / UI UI H2                                                                                                                                                                           |                   |                         |                          |                            |      |  |  |
| Voltage Min<br>Voltage Max     | 0.00<br>400.00                                                                                                                                                                              | 0.00-600.00 Vrms  |                         |                          |                            |      |  |  |
|                                |                                                                                                                                                                                             |                   |                         |                          |                            |      |  |  |
| Idle<br>▶ ⊯ +≣ +≣ 4≣           | an 🗇                                                                                                                                                                                        | Step<br>All 30: I | Total<br>00:25:57.4625  | Elapsed<br>00:00:00.0000 | Remaining<br>00:25:57.4625 |      |  |  |

If a test engineer will be modifying a test sequence, it is recommended that a copy of the original file first be saved in a different folder as changes overwrite the existing file. For detail information on test sequence modification, please see UPC Test Manager Operation Manual.

## 6.4 Step Value/Comment Window

In the **Step Value/Comment** window, the step settings are displayed for each selected item in the Step Table window. Purpose and test descriptions for individual test steps are summarized in the "Comment" text box.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    | lue/Comment Step Result                         |                                           |         |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------------------|-------------------------------------------|---------|--|
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8 - 🕨 Steady Sta                   |                                                 | D                                         |         |  |
| Phas<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    | Its Waveform<br>5.000000 1-Sine                 | Degrees<br>0                              |         |  |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    | . DIDEOT                                        |                                           |         |  |
| Form:<br>Frequi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    | upling: DIRECT<br>rrent Limit: 2000.000000 Amps |                                           |         |  |
| Currer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | t Protect: 2000.000000 Arr         | nps, 0.1 Sec                                    |                                           | <b></b> |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ent: Time based, 4 segmen<br>11895 | its                                             |                                           |         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |                                                 |                                           |         |  |
| ∢                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |                                                 |                                           |         |  |
| Comme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ent: SAC303 - Test Conditi         | on AA - 5 times @ 60 secs                       |                                           |         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Idle                               | Step Total                                      | Elapsed Remaining                         |         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |                                                 | 57.4625 00:00:00.0000 00:25:57.4625       |         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +1 +1   🖇 🌚   🖾                    | 8: 00:00:0                                      | 00.0000 00:00:00.0000 00:00:00.0000       |         |  |
| Ste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    | Value                                           | Comment                                   | Result  |  |
| ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 🗳 Script                         | Set report format flags                         | Initialize Report format flags.           |         |  |
| /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 🛒 User Input                     | UUT Part Number, UUT Serial Number, Co          |                                           |         |  |
| /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3 🌉 Control                        | Output Enable,CSC                               | Open Output Relays, CSC set to ON         |         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 😲 User Prompt                    | Connect UUT to the AC Power Source              |                                           |         |  |
| <ul> <li>Image: A state of the state of</li></ul> | 5 🕨 Steady State                   | V=115.0 F=400.0                                 | Steady State Voltage Frequency            |         |  |
| <b>~</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6 🕵 Control                        | Output Enable                                   | Change Output Enable (Close Output Rel    |         |  |
| ✓<br>✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7 😲 User Prompt                    | Perform the following steps prior to pressin    |                                           |         |  |
| ~<br>~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8 > Steady State<br>9 Transient    | V=115.0 F=400.0<br>301.6137 sec                 | SAC303 - Test Condition AA - 5 times @ 6. |         |  |
| •<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 K Meter                         | Vrms.lrms.Freg                                  | Test Defed Data Land 1 and                |         |  |
| •<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 📉 Meter<br>11 🕐 User Prompt     | Perform the following steps prior to pressi     | Test Period Data Log - 1 sec              |         |  |
| •<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12 Steady State                    | V=115.0 F=400.0                                 | SAC303 - Test Condition BB - 5 times @ 6. |         |  |
| •<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13 Transient                       | 325.51 sec                                      | SAC503 - Lest Condition BB - 3 times @ 6. |         |  |
| ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14 K Meter                         | Vrms,Irms,Freg                                  | Test Period Data Log - 1 sec              |         |  |
| ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15 😲 User Prompt                   | Perform the following steps prior to pressi     | -                                         |         |  |
| ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16 Steady State                    | V=115.0 F=400.0                                 | SAC303 - Test Condition CC - 5 times @ 6. |         |  |
| ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17 Transient                       | 301.6113 sec                                    |                                           |         |  |
| ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18 🕂 Meter                         | Vrms,Irms,Freg                                  | Test Period Data Log - 1 sec              |         |  |
| ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19 😲 User Prompt                   | Perform the following steps prior to pressi     | _                                         |         |  |
| ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20 ┝ Steady State                  | V=115.0 F=400.0                                 | SAC303 - Test Condition DD - 5 times @    |         |  |
| ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21 Transient                       | 325.5025 sec                                    |                                           |         |  |
| ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22 🥂 Meter                         | Vrms,Irms,Freq                                  | Test Period Data Log - 1 sec              |         |  |
| ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23 😲 User Prompt                   | Perform the following steps prior to pressi     | UUT Performance Test                      |         |  |
| ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24 🕨 Steady State                  | V=115.0 F=400.0                                 | SAC303 - Test Condition EE - 5 times @ 6. |         |  |
| ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25 <sup>L</sup> > Transient        | 303.225 sec                                     |                                           |         |  |

## 6.5 Step Result Window

In the **Step Result** window, the test result from each selected step is recorded. The results are recorded in the forms of text, numbers or graphs as defined in the active test sequence.

|       |                                 | lue/Comment Step Result                      |                                          |          |
|-------|---------------------------------|----------------------------------------------|------------------------------------------|----------|
|       |                                 | 02/19/2013 13:25:24 [Elapsed                 | d Time HH:MM:SS = 00:06:39               | 9.3470]  |
| Phase | Vrms(L-N) Irms<br>115.000 19.16 |                                              |                                          |          |
| 3     | 115.000 19.16                   |                                              |                                          |          |
| 2     | 115.000 19.16                   | 67 400.000                                   |                                          |          |
|       |                                 |                                              |                                          |          |
|       |                                 |                                              |                                          |          |
|       |                                 |                                              |                                          |          |
|       |                                 |                                              |                                          |          |
|       |                                 |                                              |                                          |          |
|       | Inning Step 13                  | Step Total                                   | Elapsed Remaining                        |          |
| nu    | inning step 15                  |                                              | D4.1200 00:05:22.3835 00:49:41.7365      |          |
|       | += +=   🍹 🐽   📴                 |                                              | 00.2625 00:00:22.1210 00:04:38.1415      |          |
| Step  | Description                     | Value                                        | Comment                                  | Besult   |
| /     | 1 Script                        | Set report format flags                      | Initialize Report format flags.          | Passed   |
| •     | 2 🛒 User Input                  | UUT Part Number, UUT Serial Number, Co       |                                          | Passed   |
| •     | 3 🌆 Control                     | Output Enable,CSC                            | Open Output Relays, CSC set to ON        | Passed   |
| •     | 4 🕐 User Prompt                 | Connect UUT to the AC Power Source           |                                          | Passed   |
| /     | 5 > Steady State                | Va=115.0 Vb=115.0 Vc=115.0 F=400.0           | Steady State Voltage Frequency           | Passed   |
| /     | 6 퉳 Control                     | Output Enable                                | Change Output Enable (Close Output Rel   | Passed   |
| /     | 7 🕐 User Prompt                 | Perform the following steps prior to pressin | 2                                        | Passed   |
| /     | 8 🕨 Steady State                | Va=115.0 Vb=115.0 Vc=115.0 F=400.0           | TAC201 - Test Condition A - 5 times @ 60 | Passed   |
| /     | 9 Transient                     | 300.2625 sec                                 |                                          | Passed   |
| /     | 10 🕂 Meter                      | Vrms,Irms,Freg                               | Test Period Data Log - 1 sec             | Passed — |
| -     | 11 🧿 User Prompt                | Perform the following steps prior to pressi  | UUT Performance Test                     | Passed   |
| /     | 12 ┝ Steady State               | Va=108.0 Vb=108.0 Vc=108.0 F=400.0           | TAC201 - Test Condition B - 5 times @ 60 | Passed   |
| -     | 13 Transient                    | 300.2625 sec                                 |                                          | Running  |
| /     | 14 📉 Meter                      | Vrms,Irms,Freq                               | Test Period Data Log - 1 sec             |          |
| /     | 15 😲 User Prompt                | Perform the following steps prior to pressi  | UUT Performance Test                     |          |
| /     | 16 ┝ Steady State               | Va=118.0 Vb=118.0 Vc=118.0 F=400.0           | TAC201 - Test Condition C - 5 times @ 60 |          |
| -     | 17 👘 🗁 Transient                | 300.0375 sec                                 |                                          |          |
| /     | 18 📉 Meter                      | Vrms,Irms,Freq                               | Test Period Data Log - 1 sec             |          |
| /     | 19 🭳 User Prompt                | 2 1 1 1                                      | UUT Performance Test                     |          |
| /     | 20 Þ Steady State               | Va=115.0 Vb=115.0 Vc=115.0 F=400.0           | TAC201 - Test Condition D - 5 times @ 60 |          |
| •     | 21 🕒 Transient                  | 300.1625 sec                                 |                                          |          |
| /     | 22 🕂 Meter                      | Vrms,Irms,Freq                               | Test Period Data Log - 1 sec             |          |
| /     | 23 😲 User Prompt                | Perform the following steps prior to pressi  |                                          |          |
|       | 24 🕨 Steady State               | Va=108.0 Vb=108.0 Vc=108.0 F=400.0           | TAC201 - Test Condition E - 5 times @ 60 |          |
| /     | 25 Transient                    | 300.1625 sec                                 |                                          |          |

### 6.6 Test Report Window

After the test sequence execution is completed, a test report is generated using the template file defined in the **Preference** window. All test detail information including file name, objective, preference settings, and test results are recorded in the test report as shown below. For detailed information on viewing and saving test reports, please refer to UPC Test Manager Operation Manual.

| est Report - untitled.rtf*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                           | •••• 3•••••• 4                                                                                                                                                                                                                                         | • • • • • •                                                                                        | . 5                                                                                                                                                                                                 | 6 · · · · · | • • • • • • | 1 * * * 8 | • • • <b> </b> • • | .9 | 10 | • • |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|-----------|--------------------|----|----|-----|
| L-STD 704 Rev F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ENT COMPLIANC                                                                                                                                                                                                                             | E TO AIRCRAFT ELEC                                                                                                                                                                                                                                     | FRICAL POW                                                                                         | VER CHARACTER                                                                                                                                                                                       | USTICS      |             |           |                    |    |    |     |
| T Part Number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | KZ-0                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                        |                                                                                                    | 547823341                                                                                                                                                                                           |             |             |           |                    |    |    |     |
| mpany:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Avior<br>Corp.                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                        | Operator:                                                                                          | <u>John</u>                                                                                                                                                                                         |             |             |           |                    |    |    |     |
| T Mode of Operat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tion: Powe                                                                                                                                                                                                                                | r Transfer                                                                                                                                                                                                                                             |                                                                                                    | <u>.</u>                                                                                                                                                                                            |             |             |           |                    |    |    |     |
| Test Sequence [TAC_<br>bjective:<br>STANDARD: MIL-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                           | TAC201                                                                                                                                                                                                                                                 |                                                                                                    |                                                                                                                                                                                                     |             |             |           |                    |    |    |     |
| POWER GROUP: T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AC - Three Phase                                                                                                                                                                                                                          | e, 115V, 400Hz                                                                                                                                                                                                                                         |                                                                                                    |                                                                                                                                                                                                     |             |             |           |                    |    |    |     |
| AIRCRAFT ELECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RICAL OPERATI                                                                                                                                                                                                                             | NG CONDITION: T                                                                                                                                                                                                                                        | ransfer Inter                                                                                      | rrupt                                                                                                                                                                                               |             |             |           |                    |    |    |     |
| PARAMETER: P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ower Interrunt                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                        |                                                                                                    |                                                                                                                                                                                                     |             |             |           |                    |    |    |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ower interrupt                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                        |                                                                                                    |                                                                                                                                                                                                     |             |             |           |                    |    |    |     |
| NOTES:<br>This test procedure i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s used to verify the                                                                                                                                                                                                                      | at three phase, 115 Volt, 40                                                                                                                                                                                                                           | 0 Hz                                                                                               |                                                                                                                                                                                                     |             |             |           |                    |    |    |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                           | it there phase, it's vort, 4                                                                                                                                                                                                                           |                                                                                                    |                                                                                                                                                                                                     |             |             |           |                    |    |    |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                           | nd maintains specified per                                                                                                                                                                                                                             | formance whe                                                                                       | en subjected to                                                                                                                                                                                     |             |             |           |                    |    |    |     |
| power utilization eq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | uipment operates ar                                                                                                                                                                                                                       | nd maintains specified per<br>licable edition(s) of MIL-                                                                                                                                                                                               |                                                                                                    | en subjected to                                                                                                                                                                                     |             |             |           |                    |    |    |     |
| power utilization eq<br>power interrupts as s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | uipment operates ar                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                        |                                                                                                    | en subjected to                                                                                                                                                                                     |             |             |           |                    |    |    |     |
| power utilization equ<br>power interrupts as s<br>Test Conditions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | uipment operates ar<br>specified in the app                                                                                                                                                                                               | licable edition(s) of MIL-                                                                                                                                                                                                                             | STD-704.                                                                                           | -                                                                                                                                                                                                   |             |             |           |                    |    |    |     |
| power utilization equ<br>power interrupts as s<br><b>Test Conditions:</b><br>Each test conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | uipment operates ar<br>specified in the app<br>is repeated 5 times                                                                                                                                                                        | licable edition(s) of MIL-                                                                                                                                                                                                                             | STD-704.<br>etween them. 1                                                                         | If the UUT                                                                                                                                                                                          |             |             |           |                    |    |    |     |
| power utilization equ<br>power interrupts as s<br><b>Test Conditions:</b><br>Each test conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | uipment operates ar<br>specified in the app<br>is repeated 5 times<br>0 seconds to revov                                                                                                                                                  | licable edition(s) of MIL-                                                                                                                                                                                                                             | STD-704.<br>etween them. 1                                                                         | If the UUT                                                                                                                                                                                          |             |             |           |                    |    |    |     |
| power utilization eq<br>power interrupts as s<br><b>Test Conditions:</b><br>Each test conditions<br>requires more than 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | uipment operates ar<br>specified in the app<br>is repeated 5 times<br>0 seconds to revov<br>ach Test Condition                                                                                                                            | licable edition(s) of MIL-<br>with a 60 second delay be<br>er from a power interrupt,<br>step.                                                                                                                                                         | STD-704.<br>etween them. I<br>increase the 6                                                       | If the UUT                                                                                                                                                                                          |             |             |           |                    |    |    |     |
| power utilization eq<br>power interrupts as s<br><b>Test Conditions:</b><br>Each test conditions<br>requires more than 6<br>between events on e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | uipment operates ar<br>specified in the app<br>is repeated 5 times<br>0 seconds to revov                                                                                                                                                  | licable edition(s) of MIL-                                                                                                                                                                                                                             | STD-704.<br>etween them. 1<br>increase the 6<br>upt T f                                            | If the UUT<br>60 sec delay                                                                                                                                                                          | -           |             |           |                    |    |    |     |
| power utilization equipower interrupts as since the second | uipment operates ar<br>specified in the app<br>is repeated 5 times<br>i0 seconds to revov<br>ach Test Condition<br>SS Voltage                                                                                                             | licable edition(s) of MIL-<br>with a 60 second delay be<br>er from a power interrupt,<br>step.<br>Duration of Interr                                                                                                                                   | STD-704.<br>etween them. I<br>increase the 6<br>upt T f<br>< 1                                     | If the UUT<br>60 sec delay<br>fall/rise                                                                                                                                                             |             |             |           |                    |    |    |     |
| power utilization equ<br>power interrupts as s<br>Test Conditions:<br>Each test conditions<br>requires more than 6<br>between events on e<br>Test Condition<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | uipment operates ar<br>specified in the app<br>is repeated 5 times<br>i0 seconds to revov<br>ach Test Condition<br>SS Voltage<br>115 V                                                                                                    | licable edition(s) of MIL-<br>with a 60 second delay berfrom a power interrupt,<br>step.<br>Duration of Interruct<br>50 msec                                                                                                                           | STD-704.<br>etween them. 1<br>increase the 6<br>upt T f<br>< 1<br>< 1                              | If the UUT<br>60 sec delay<br>fall/rise<br>1.25 msec                                                                                                                                                |             |             |           |                    |    |    |     |
| power utilization equ<br>power interrupts as s<br>Test Conditions:<br>Each test conditions<br>requires more than 6<br>between events on e<br>Test Condition<br>A<br>B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | uipment operates at<br>specified in the app<br>is repeated 5 times<br>i0 seconds to revov<br>ach Test Condition<br>SS Voltage<br>115 V<br>108 V                                                                                           | licable edition(s) of MIL-<br>with a 60 second delay be<br>erfrom a power interrupt,<br>step.<br>Duration of Interru<br>50 msec<br>50 msec                                                                                                             | STD-704.<br>etween them. 1<br>increase the 6<br>upt T f<br><1<br><1<br><1<br><1<br><1<br><1        | If the UUT<br>60 sec delay<br>fall/rise<br>1.25 msec<br>1.25 msec                                                                                                                                   |             |             |           |                    |    |    |     |
| power utilization eq<br>power interrupts as s<br>Test Conditions:<br>Each test conditions<br>requires more than 6<br>between events on e<br>Test Condition<br>A<br>B<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | uipment operates at specified in the app is repeated 5 times 0 seconds to revov ach Test Condition SS Voltage 115 V 108 V 118 V                                                                                                           | licable edition(s) of MIL-<br>with a 60 second delay b<br>er from a power interrupt,<br>step.<br>Duration of Interru<br>50 msec<br>50 msec<br>50 msec                                                                                                  | STD-704.           etween them. 1           increase the 6           upt         T f           < 1 | If the UUT<br>60 sec delay<br>1.25 msec<br>1.25 msec<br>1.25 msec<br>1.25 msec                                                                                                                      |             |             |           |                    |    |    |     |
| power utilization eq<br>power interrupts as s<br>Test Conditions:<br>Each test conditions<br>requires more than 6<br>between events on e<br>Test Condition<br>A<br>B<br>C<br>D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | uipment operates at<br>specified in the app<br>is repeated 5 times<br>0 seconds to revov<br>ach Test Condition<br>SS Voltage<br>115V<br>108V<br>118V<br>115V                                                                              | licable edition(s) of MIL-<br>with a 60 second delay b<br>er from a power interrupt,<br>step.<br>Duration of Interru<br>50 msec<br>50 msec<br>30 msec<br>30 msec                                                                                       | STD-704.           etween them. 1           increase the 6           upt         T f           < 1 | If the UUT<br>60 sec delay<br>1.25 msec<br>1.25 msec<br>1.25 msec<br>1.25 msec<br>1.25 msec                                                                                                         |             |             |           |                    |    |    |     |
| power utilization eq<br>power interrupts as s<br>Test Conditions:<br>Each test conditions<br>requires more than 6<br>between events on e<br>Test Condition<br>A<br>B<br>C<br>D<br>E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | uipment operates at<br>specified in the app<br>is repeated 5 times<br>0 seconds to revov<br>ach Test Condition<br>SS Voltage<br>115V<br>108V<br>118V<br>115V<br>108V                                                                      | licable edition(s) of MIL-<br>with a 60 second delay b<br>er from a power interrupt,<br>step.<br><b>Duration of Interr</b><br>50 msec<br>50 msec<br>50 msec<br>30 msec<br>30 msec<br>30 msec                                                           | STD-704.           etween them. 1           increase the 0           upt         T f           < 1 | If the UUT<br>60 sec delay<br>1.25 msec<br>1.25 msec<br>1.25 msec<br>1.25 msec<br>1.25 msec<br>1.25 msec                                                                                            |             |             |           |                    |    |    |     |
| power utilization eq<br>power interrupts as s<br>Test Conditions:<br>Each test conditions<br>requires more than 6<br>between events on e<br>Test Condition<br>A<br>B<br>C<br>D<br>E<br>F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | uipment operates at<br>specified in the app<br>is repeated 5 times<br>to seconds to revov<br>ach Test Condition<br>SS Voltage<br>115V<br>108V<br>118V<br>118V<br>108V<br>118V<br>108V<br>118V                                             | licable edition(s) of MIL-<br>with a 60 second delay b<br>er from a power interrupt,<br>step.<br>Duration of Interr<br>50 msec<br>50 msec<br>50 msec<br>30 msec<br>30 msec<br>30 msec<br>30 msec                                                       | STD-704.           etween them. 1           increase the 0           upt         T f           < 1 | If the UUT<br>60 sec delay<br>1.25 msec<br>1.25 msec<br>1.25 msec<br>1.25 msec<br>1.25 msec<br>1.25 msec<br>1.25 msec                                                                               |             |             |           |                    |    |    |     |
| power utilization equipower interrupts as set Test Conditions:<br>Each test conditions requires more than 6 between events on e Test Condition A B C C D E F G G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | uipment operates ar<br>specified in the app<br>is repeated 5 times<br>i0 seconds to revov<br>ach Test Condition<br>SS Voltage<br>115V<br>108V<br>118V<br>118V<br>108V<br>118V<br>108V<br>118V<br>108V<br>118V<br>108V                     | licable edition(s) of MIL-<br>with a 60 second delay b<br>er from a power interrupt,<br>step.<br><b>Duration of Interr</b><br>50 msec<br>50 msec<br>30 msec<br>30 msec<br>30 msec<br>10 msec                                                           | STD-704.           etween them. 1           increase the 0           upt         T f           < 1 | If the UUT<br>60 sec delay<br>fall/rise<br>1.25 msec<br>1.25 msec<br>1.25 msec<br>1.25 msec<br>1.25 msec<br>1.25 msec<br>1.25 msec<br>1.25 msec                                                     |             |             |           |                    |    |    |     |
| power utilization equ<br>power interrupts as s<br>Test Conditions:<br>Each test conditions<br>requires more than 6<br>between events on e<br>Test Condition<br>A<br>B<br>C<br>D<br>D<br>E<br>F<br>G<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | uipment operates ar<br>specified in the app<br>is repeated 5 times<br>i0 seconds to revov<br>ach Test Condition<br>SS Voltage<br>115V<br>108V<br>118V<br>118V<br>108V<br>118V<br>108V<br>118V<br>108V<br>118V<br>108V<br>118V             | licable edition(s) of MIL-<br>with a 60 second delay b<br>er from a power interrupt,<br>step.<br><b>Duration of Interr</b><br>50 msec<br>50 msec<br>30 msec<br>30 msec<br>10 msec<br>10 msec                                                           | STD-704.           etween them. 1           increase the 0           upt         T f           < 1 | If the UUT<br>60 sec delay<br>fall/rise<br>1.25 msec<br>1.25 msec<br>1.25 msec<br>1.25 msec<br>1.25 msec<br>1.25 msec<br>1.25 msec<br>1.25 msec                                                     |             |             |           |                    |    |    |     |
| power utilization equ<br>power interrupts as s<br>Test Conditions:<br>Each test conditions<br>requires more than 6<br>between events on e<br>Test Condition<br>A<br>B<br>C<br>D<br>E<br>E<br>F<br>G<br>H<br>I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | uipment operates ar<br>specified in the app<br>is repeated 5 times<br>i0 seconds to revov<br>ach Test Condition<br>SS Voltage<br>115 V<br>108 V<br>118 V<br>115 V<br>108 V<br>115 V<br>118 V<br>115 V<br>108 V<br>118 V<br>115 V<br>118 V | licable edition(s) of MIL-<br>with a 60 second delay b<br>er from a power interrupt,<br>step.<br><b>Duration of Interr</b><br>50 msec<br>50 msec<br>30 msec<br>30 msec<br>10 msec<br>10 msec<br>10 msec<br>10 msec                                     | STD-704.         etween them1         increase the 6         upt       T f         <1              | If the UUT<br>60 sec delay<br>fall/rise<br>1.25 msec<br>1.25 msec<br>1.25 msec<br>1.25 msec<br>1.25 msec<br>1.25 msec<br>1.25 msec<br>1.25 msec<br>1.25 msec<br>1.25 msec                           |             |             |           |                    |    |    |     |
| power utilization equ<br>power interrupts as s<br>Test Conditions:<br>Each test conditions<br>requires more than 6<br>between events on e<br>Test Condition<br>A<br>B<br>C<br>D<br>E<br>E<br>F<br>G<br>H<br>I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | uipment operates ar<br>specified in the app<br>is repeated 5 times<br>i0 seconds to revov<br>ach Test Condition<br>SS Voltage<br>115 V<br>108 V<br>118 V<br>115 V<br>108 V<br>115 V<br>118 V<br>115 V<br>108 V<br>118 V<br>115 V<br>118 V | licable edition(s) of MIL-<br>with a 60 second delay b<br>erfrom a power interrupt,<br>step.<br>Duration of Interr<br>50 msec<br>50 msec<br>50 msec<br>30 msec<br>30 msec<br>10 msec<br>10 msec<br>50 msec<br>50 msec<br>50 msec<br>50 msec            | STD-704.         etween them. 1         increase the 6         upt       T f         <1            | If the UUT<br>60 sec delay<br>fall/rise<br>1.25 msec<br>1.25 msec<br>1.25 msec<br>1.25 msec<br>1.25 msec<br>1.25 msec<br>1.25 msec<br>1.25 msec<br>1.25 msec<br>1.25 msec                           |             |             |           |                    |    |    |     |
| power utilization equipower interrupts as s<br>Test Conditions:<br>Each test conditions requires more than 6 between events on e<br>Test Condition<br>A<br>B<br>C<br>D<br>E<br>F<br>G<br>H<br>I<br>J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | uipment operates at<br>specified in the app<br>is repeated 5 times<br>i0 seconds to revov<br>ach Test Condition<br><b>SS Voltage</b><br>115 V<br>108 V<br>118 V<br>115 V<br>108 V<br>118 V<br>115 V<br>108 V<br>118 V<br>115 V            | licable edition(s) of MIL-<br>with a 60 second delay b<br>er from a power interrupt,<br>step.<br>Duration of Interr<br>50 msec<br>50 msec<br>50 msec<br>30 msec<br>30 msec<br>10 msec<br>10 msec<br>50 msec<br>(3x at 0.5 sec interv                   | STD-704.         etween them. 1         increase the d         upt       T f         < 1           | If the UUT<br>60 sec delay<br>1.25 msec<br>1.25 msec                           |             |             |           |                    |    |    |     |
| power utilization equipower interrupts as s<br>Test Conditions:<br>Each test conditions requires more than 6 between events on e<br>Test Condition<br>A<br>B<br>C<br>D<br>E<br>F<br>G<br>H<br>I<br>J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | uipment operates at<br>specified in the app<br>is repeated 5 times<br>i0 seconds to revov<br>ach Test Condition<br><b>SS Voltage</b><br>115 V<br>108 V<br>118 V<br>115 V<br>108 V<br>118 V<br>115 V<br>108 V<br>118 V<br>115 V            | licable edition(s) of MIL-<br>with a 60 second delay b<br>er from a power interrupt,<br>step.<br><b>Duration of Interr</b><br>50 msec<br>50 msec<br>30 msec<br>30 msec<br>30 msec<br>10 msec<br>10 msec<br>50 msec<br>(3x at 0.5 sec interv<br>50 msec | STD-704.         etween them. 1         increase the d         upt       T f         <1            | If the UUT<br>60 sec delay<br>1.25 msec<br>1.25 msec |             |             |           |                    |    |    |     |

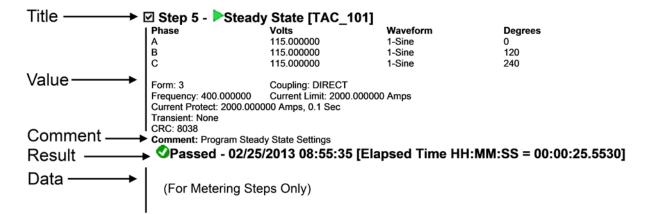
# 7 Test Reports

Test reports are automatically created as each test sequence is executed. Generally, information contained in each step is added to the report as each step is executed. This includes the step type, parameters set, any measurement values recorded, comments and the result of each step (Pass or Fail).

Test reports can be used as is or further customized by the user. This chapter covers some of the possible changes that can be made as needed.

## 7.1 Template Files

Reports are based on a report template that is installed at the same time as the test sequences in the following directory:


"C:\Pacific Power Source\UPC Manager\Test Reports\Templates"

Template files can be blank or contain introductory text, graphics, form fields, page / paragraph / character formatting, page header and footer (page numbering, date etc.).

## 7.2 Report Entries

Running a test sequence or test plan appends the results of each step at the end of test report. Running a test sequence from the beginning (using the Start icon in the Run Toolbar) initializes the test report from the selected template file then adds the test sequence Objective and Preferences. This creates a clean report each time the test sequence is run. Running a test sequence using the other controls does not clear the test report or add the Objective or Preferences, making it easier to troubleshoot (single step etc.) a test.

After each step runs, the information about that step is appended to the test report as shown below. This information includes the Title, Value, Comment, Result and Data of each step.



Title includes the enable checkbox, step number, icon, type and test sequence file name. Value and Comment are the test sequence information from the Step Value/Comment tab (design window). Result shows the result icon, title, date/time the step completed and the elapsed time the step completed from the beginning of the test. Note that not all steps produce data. The data also includes any errors that occurred running the step. Result and Data are also shown in the Step Result tab in the test sequence window .

### 7.3 Customizing Test Reports

There are several ways to customize test reports. Some possibilities are:

- 1. Change Headers and or Footers
- 2. Select which test steps to include in a report or how much information from each test step to include or exclude from the report.
- 3. Reformat layout, format tables and or fonts after the report is saved.

#### 7.3.1 Report Template Headers and Footers

The provided MIL-STD-704F Report template files contain a simple footer which contains only basic information and no header.

The footer contains the following information.

| Pacific Power Source, Inc.             | 27 of 129  | 9/12/2013 9:30:22 AM |
|----------------------------------------|------------|----------------------|
| 149153-10_MIL-STD-704F Option Manual.d | loc v1.0.0 | Irvine CA, USA       |

A Header can be added by opening either of the two provided template files using MS Word.

MIL-STD 704 Template.rtf

MIL-STD 704 101 Template.rtf

Open the template file and select the "Insert" Ribbon tab. Click on "Header" in the Header & Footer" section. Select form the available list of header formats. This will insert a header on the first page and every subsequent page. You can insert your company's logo to create a custom look for your reports.

| 2               | ク・ロロ                      | ¥.         | ML-S      | TD 704-Template | suff (Compa | sibility Mode | - Microso  | A Word      | -            | Hunthi     | E (ucomito   | off. | -        |          |        | -       | -    |         | -      |       | -    | _    |         |      |       |       |        | 6 |     |
|-----------------|---------------------------|------------|-----------|-----------------|-------------|---------------|------------|-------------|--------------|------------|--------------|------|----------|----------|--------|---------|------|---------|--------|-------|------|------|---------|------|-------|-------|--------|---|-----|
| File            | Home                      | Insert Pag | ge Layout | References      | Mailings    | Review        | Vinv       | Developer   | Acrobat      |            | Design       |      |          |          |        |         |      |         |        |       |      |      |         |      |       |       |        |   | - O |
| 1               | 前書                        |            | -         | 1 2             |             | 50-           | 2          |             |              |            |              |      |          | A        | A      | Signatu |      | π       | Ω      |       |      |      |         |      |       |       |        |   |     |
| Cover<br>Page * | Elank Pege<br>Faite Bleak | Table Po   | cture Cip | Shapes Smart4e  | t Chart. So | senter H      | perlink Bo | sokmark Cro | is-reference | Header     | footer Pag   | 24 1 | ext Qui  | ck Word4 | t Deep | Date &  |      | Taution | Symbol | Embed |      |      |         |      |       |       |        |   |     |
|                 | Pagel                     | Tables     |           | Distration      |             |               |            | Links.      |              | Hra        | der & Fonter |      | 04 · P#1 | 0        | Test   | and the | _    | Sye     |        | Plash |      |      |         |      |       |       |        |   |     |
|                 |                           |            | - 8       |                 |             |               |            |             |              |            |              |      | - 1      |          |        |         |      |         |        |       |      |      |         |      |       |       | - 35 v |   |     |
|                 |                           |            |           |                 |             |               |            |             |              |            |              |      |          |          |        |         |      |         |        |       |      |      |         |      |       |       |        |   |     |
| 10011           |                           |            |           |                 |             |               |            |             |              |            |              |      |          |          |        |         |      |         |        |       |      |      |         |      |       |       |        |   |     |
|                 |                           |            |           |                 |             |               |            |             |              |            |              |      |          |          |        |         |      |         |        |       |      |      |         |      |       |       |        |   |     |
|                 |                           |            |           |                 |             |               |            |             |              |            |              |      |          |          |        |         |      |         |        |       |      |      |         |      |       |       |        |   |     |
| -               |                           |            |           |                 |             |               |            |             |              |            |              |      |          |          |        |         |      |         |        |       |      |      |         |      |       |       | - B.   |   |     |
| 2               |                           |            |           |                 |             |               |            |             |              |            |              |      |          |          |        |         |      |         |        |       |      |      | 4       |      |       | FIC   |        |   |     |
| -               |                           |            |           |                 |             |               |            |             |              |            |              |      |          |          |        |         |      |         |        |       |      | Ţ    |         | PA   |       |       |        |   |     |
| 1               |                           |            | -         |                 |             |               |            |             | -            | -          |              |      |          |          |        |         |      |         |        |       | 1    | 74   | 🛋 i     | owie | ER SC | DURCI |        |   |     |
| 1               |                           |            | ſ         | VIL-S           | ID-         | /04.          | ES         | I-RE        | POP          | <b>KIS</b> |              | +    |          |          |        |         |      |         |        |       |      |      |         |      |       |       | 9      |   |     |
|                 |                           |            | 9         |                 |             |               |            |             |              | 10         |              |      |          |          |        |         |      |         |        |       |      |      |         |      |       |       |        |   |     |
|                 | Header                    |            | 1         | MIL-S'          | TD          | 04-R          | evil       | 30          |              |            |              |      |          |          |        |         |      |         |        |       |      |      |         |      |       |       |        |   |     |
| -               |                           |            |           | JTILIZ          |             |               |            |             | E.CO         | ADT        | LANC         | ET   | 0.41     | DOL      | AT     | TITI    | CTI  | DIC     | AT D   | OWE   | D.CI | IADA | CTE     | DICT | TCS   |       |        |   |     |
| 11              |                           |            |           | , 11L1Z         | AIIC        | NEQ           | UIF        | ALEIN.      | rco          | VIFL       | LAINC        | E.1. | 0.A      | INCI     | CAL    | I.ELI   | CII  | KIC/    | TT.L.  | OWE   | K.CI | DAIC | wire in |      | 10.5  |       |        |   |     |
|                 |                           |            |           |                 |             |               |            |             |              | 1.1        |              |      |          |          |        |         |      |         |        |       |      | _    |         |      |       |       |        |   |     |
| -               |                           |            | 1         | JUT·F           | art         | Num           | ber:       | ×C)         |              | - 1        | JSEI         | λĒ   | NTI      | Ro       |        | Se      | 'ial | ·Nu     | mbe    | r:    |      | 10   |         |      |       |       |        |   |     |
|                 |                           |            |           | Compa           | mvs         |               |            |             |              | 1          |              | 0    |          |          |        | Te      | et.C | Ine     | rato   | area. |      | Sec. |         |      |       |       |        |   |     |
| 1               |                           |            |           |                 | uny.        |               |            |             |              | - 18       |              | 1.41 |          |          |        | 10      | at c | Jpc     | Lato   | 1     |      | 1410 |         |      |       |       |        |   |     |
| +               |                           |            |           |                 |             |               |            |             |              | 1.5        | 2            |      |          |          |        |         |      |         |        |       |      |      |         |      |       |       |        |   |     |
|                 |                           |            | 1         | JUT·M           | lode        | e of C        | )per       | atio        | n: Ó         | - 1        | JSEI         | (E)  | NTI      | Ro       |        |         |      |         |        |       |      |      |         |      |       |       |        |   |     |
|                 |                           |            |           |                 |             |               | 1          |             |              |            |              |      |          |          |        |         |      |         |        |       |      |      |         |      |       |       |        |   |     |
|                 |                           |            | 10        |                 |             |               |            |             |              |            |              |      |          |          |        |         |      |         |        |       |      |      |         |      |       |       |        |   |     |
| 1               |                           |            |           |                 |             |               |            |             |              |            |              |      |          |          |        |         |      |         |        |       |      |      |         |      |       |       |        |   |     |
|                 |                           |            |           |                 |             |               |            |             |              |            |              |      |          |          |        |         |      |         |        |       |      |      |         |      |       |       |        |   |     |
|                 |                           |            |           |                 |             |               |            |             |              |            |              |      |          |          |        |         |      |         |        |       |      |      |         |      |       |       |        |   |     |
|                 |                           |            |           |                 |             |               |            |             |              |            |              |      |          |          |        |         |      |         |        |       |      |      |         |      |       |       |        |   |     |
|                 |                           |            |           |                 |             |               |            |             |              |            |              |      |          |          |        |         |      |         |        |       |      |      |         |      |       |       |        |   |     |

Figure 1: Adding Custom Report Headers to Report Template using MS Word

The same feature can be used to edit the existing report footer as needed.

Once satisfied with the look, save the report template. If you want to preserve the original templates provided, rename them to a different file name before saving your customer version. You can also restore the

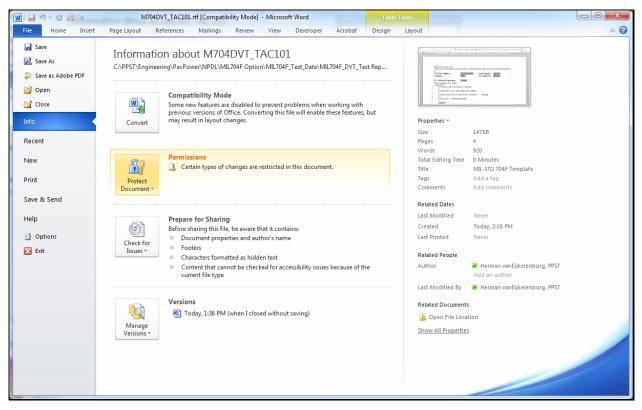
original report template files by re-installing the MIL-STD-704F option but this will also re-install all test sequences.

### 7.3.2 Customizing Report Content using VB Script Steps

The VB Scripting feature of the UPC Test Manager program may be used to selectively exclude all or part of a test report entry. Most of the provided MIL-STD-704F test sequences use this feature in Step #1.

The available flags that can be set or cleared to include or exclude a specific test step report entry are covered by the UPC Studio on-line Help file and are not repeated in this manual. Search the Help file Index tab for "Script" to find the relevant information.

#### 7.3.3 Editing existing Reports


As a rule, test reports generated by executing a test sequence are locked and cannot be edited. If needed, it is possible to unlock a report in order to add additional information or format data is a different way than the standard report provides.

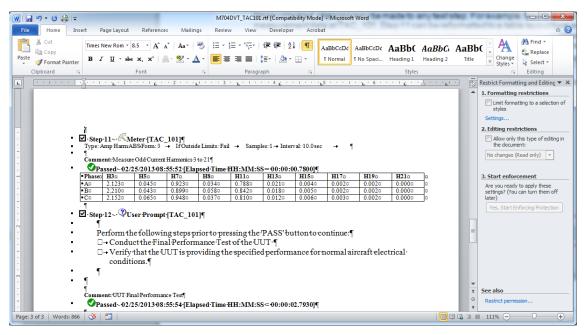
To edit an existing test report, proceed as follows:

- 1. Complete the test sequence and save the report when prompted as the end of the test sequence.
- 2. Use MS Word to open the file located in the Reports directory of UPC Studio, typically:

C:\Pacific Power Source\UPC Manager\Test Reports

- 3. Clicking with the mouse on any area or page of the test report will take you to the top of the first page of the report. This is due to the fact that all sections of the report are restricted for editing.
- 4. To verify this, select the File menu tab in MS Word and select "Info" on the left bar.
- 5. The second tile down is labeled "Protect Document" and shows the Permissions that apply to this document.




- 6. To change permissions, select the "Review" ribbon in MS Word and click on the far right Button labeled "Restrict Editing".
- 7. This brings up a "Restrict Formatting and Editing" column on the right side of the screen. At the bottom of this bar is a button called "Stop Protection". Click this button to disable the editing restrictions that are in effect.

| W 🔒 🤊 - O i           | <b>⊜</b>   <del>-</del>                                                                 | M704DVT_TAC101.rt                                                                         | f [Compatibility Mode] - M                                                                                         | icrosoft Word                                                                                                                                                                                             | Table Tools                                        |                   | a da compañía de                                      |                                                                  |
|-----------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------|-------------------------------------------------------|------------------------------------------------------------------|
| File Home             | Insert Page Layou                                                                       | t References                                                                              | Mailings Review V                                                                                                  | iew Developer Acrobat                                                                                                                                                                                     | Design Layout                                      |                   | _                                                     | ۵ 🕜                                                              |
| Grammar               | h Thesaurus Word<br>Count                                                               |                                                                                           | lew Delete Previous Net                                                                                            | t Track<br>Changes • Previewing Par<br>Tracking                                                                                                                                                           | Arrent                                             | Reject<br>Changes | Compare Bill ck Re<br>Authors - Ed<br>Compare Protect | strict                                                           |
| L                     |                                                                                         | 1 * * * 1 * * * 2                                                                         | I≣ <mark>X·····3··</mark> ↓                                                                                        | # ・・・4・・・・・ # 5                                                                                                                                                                                           |                                                    | 7                 | Restrict Form                                         | natting and Editing 🔻 🗙                                          |
|                       |                                                                                         |                                                                                           | · · ·                                                                                                              |                                                                                                                                                                                                           |                                                    |                   | A Your permi                                          | issions                                                          |
|                       |                                                                                         |                                                                                           |                                                                                                                    |                                                                                                                                                                                                           |                                                    |                   | ■ unintention                                         | ent is protected from<br>al editing.<br>Ny fill in forms in this |
| -<br>-<br>-<br>-      | ¶                                                                                       | QUIPMENTCOM                                                                               |                                                                                                                    | FT-ELECTRICAL-POWER-                                                                                                                                                                                      |                                                    |                   |                                                       |                                                                  |
| •                     | UUT Part Nu                                                                             | mber∵¤                                                                                    | DVT·MIL704F                                                                                                        | Serial Number: TA                                                                                                                                                                                         |                                                    | α                 |                                                       |                                                                  |
| •                     | Company:¤                                                                               |                                                                                           | <u>PPST</u> ¤                                                                                                      | Test Operator: He                                                                                                                                                                                         |                                                    | α                 |                                                       |                                                                  |
|                       | ¤<br>UUT Mode of                                                                        |                                                                                           | ¤<br>Normal¤                                                                                                       | αα                                                                                                                                                                                                        |                                                    | α                 |                                                       |                                                                  |
|                       | ¶<br>POWER-G<br>¶<br>AIRCRAF                                                            | RD: MIL-STD-704                                                                           | RevF~TAC101¶<br>reePhase,115V,400Hz<br>DPERATING-CONDITIO<br>surements¶                                            |                                                                                                                                                                                                           |                                                    |                   |                                                       |                                                                  |
| -<br>m<br>-           | • <u>NOTES:</u> ¶<br>• This test                                                        | s-used to verify that                                                                     | "<br>at three phase, 115 Volt,                                                                                     | 400 Hz power¶<br>utral power, current inrush is v                                                                                                                                                         | vithin limits ¶                                    |                   |                                                       |                                                                  |
| -<br>-<br>-<br>-<br>- | <ul> <li>has balance</li> <li>Additional</li> <li>waveform</li> <li>waveform</li> </ul> | ed power, the power<br>ly, when the utiliza<br>requirements, this<br>is within total curr | er factor is within limits,<br>tion equipment performa-<br>test procedure is used to<br>ent distortion and current | utra power, current anrush is v<br>and does not use half-wave rea<br>nace specification document in<br>verify that the utilization equip<br>(spectrum (current distortion v<br>e specification document.¶ | ctification.¶<br>nposes-current¶<br>oment-current¶ |                   | *<br>0<br>¥<br>Stop Prot                              | tection                                                          |
| Page: 1 of 4 Wor      | rds: 920                                                                                |                                                                                           |                                                                                                                    |                                                                                                                                                                                                           |                                                    |                   | 🕅 🗔 🛯 📃 111% 😑                                        |                                                                  |

8. Once unlocked, changes may be made to any test step. For example, the Harmonic measurement data at TAC\_101, Step 11 which runs beyond the page margin can be reformatted to a table layout for a more pleasing view of the data. Also, the header information could be removed as the selected harmonics will be evident from the measurement data. Below is what the step 11 entry in the report.

| 🚽 🤊 - O      | 🏥 i 🕫      |        |          |                    |              |          |              |            |          |                  | M                | 704DV        | T_TAC1                  | .01.rtf [ | Compa                  | rtibility         | Mod   | e] - Mi    | crosoft | Word     | -     |                | ~     | -     | -          |    |                                                  | 2   |
|--------------|------------|--------|----------|--------------------|--------------|----------|--------------|------------|----------|------------------|------------------|--------------|-------------------------|-----------|------------------------|-------------------|-------|------------|---------|----------|-------|----------------|-------|-------|------------|----|--------------------------------------------------|-----|
| File Home    | e In       | sert   | Pa       | ge Lay             | out          | Ref      | erenc        | es         | Mai      | lings            | Rev              | view         | Viev                    | / C       | evelop                 | er                | Acro  | bat        |         |          |       |                |       |       |            |    |                                                  | ۵   |
| Cut          |            | Tin    | nes N    | ew Roi             | m - 1        | .0 -     | A            | A          | Aa •     | Að               | i =              | - <b>j</b> Ξ | + <sup>1</sup> a_1 +    |           |                        | ≵↓ <mark> </mark> | 1     | AaBbO      | cDć     | AaBbCcI  | De A  | aBb(           | AaB   | bC    | Aal        | Bb | wae Replace                                      |     |
| 👻 🛷 Forma    | at Painter | B      | I        | Ū                  | abe          | x, )     | ¢.           | A-         | ab2 -    | <u>A</u> -       |                  | 書 3          |                         | \$≣*      |                        | •                 |       | 1 Nor      | mal     | No Spac  | i He  | ading 1        | Headi | ng 2  | Tit        | le |                                                  |     |
| Clipboard    | 5          | a l    |          |                    |              | Font     |              |            |          | - G              |                  |              | Para                    | graph     |                        |                   | G.    |            |         |          |       | Styles         |       |       |            |    | 🗟 Editing                                        |     |
|              |            | ·X·    | • 1      | L 1 1              | 1 :          | 10       |              | · 2        |          | 1.1.1            | 6.1              | 3 .          | η <sub>μ</sub> ι.       |           | 4 L ·                  | 2.1               | - 1 L | 5 · ·      | 1.1     | 6        | 10.1  | 1.1.1.1        | 4     | 1.1.6 | .          | 5  | Restrict Formatting and Editing                  | g 7 |
|              |            |        |          |                    |              |          |              |            |          |                  |                  |              |                         |           |                        |                   |       |            |         |          |       |                |       |       |            | -  | 1. Formatting restrictions                       |     |
|              | •          | ⊡∙s    | tep∙l    | <b>11</b> 6        | M            | eter [   | ТАС          | _10        | 1]¶      |                  |                  |              |                         |           |                        |                   |       |            |         |          |       |                |       |       |            |    | Limit formatting to a selection styles           | ion |
|              |            | Typ    | e: Ar    | np Ha              | um:Al        | BSiFor   | m: 3         | <b>→</b>   | IfOut    | side Li          | mits: F          | 'ail ⊣       | <ul> <li>San</li> </ul> | nples: 1  | → Inte                 | erval: 1          | 0.0s  | ec -       | 1       |          |       |                |       |       |            |    | Settings                                         |     |
|              | •          |        |          |                    |              | MA       | G∙5          | <b>→</b> ] | MAG      | •7 →             | MAG              | 3-9 -        | • MA                    | G·11 ·    | → MA                   | G·13              | → N   | IAG·15     | → M     | AG·17    | → MA  | G-19           |       |       |            |    | 2. Editing restrictions                          |     |
|              | •          | A      |          | MAG<br>Yes<br>Yes¶ |              | Yes      | -            |            | Yes      | -+               | Yes              | -+           | Yes                     |           | Yes                    |                   | 2     | les -      | Y       | es →     | Yes   |                |       |       |            |    | Allow only this type of editing<br>the document: | ing |
|              | •          |        | -        | 1691               | <b>→</b>     |          | -+           |            |          | <b>→</b>         |                  | <b>→</b>     |                         | <b>→</b>  |                        | <b>→</b>          |       | <b>→</b>   |         | <b>→</b> |       | -              | ۲.    |       |            |    | No changes (Read only)                           | 1   |
|              | •          |        | •        |                    | <b>→</b>     |          | -+           |            |          | <b>→</b>         |                  | •            |                         | -         |                        | -                 |       | , <b>→</b> |         | -        |       | → <sup>1</sup> | Ý –   |       |            |    |                                                  | 1   |
|              |            | В      | →<br>→   | Yes<br>Yes         | -            | Yes      | -            |            | Yes      | -                | Yes              | -            | Yes                     | -+        | Yes                    | -                 | 3     | es –       | • 1     | es →     | Yes   |                |       |       |            |    | 3. Start enforcement                             |     |
|              | •          |        | •        |                    | <b>→</b>     |          | -+           |            |          | <b>→</b>         |                  | <b>→</b>     |                         | -+        |                        | -                 |       | -+         |         | -+       |       | -              | 1     |       |            |    | Are you ready to apply these                     |     |
|              |            | C.     | +<br>-+  | Yes                | →            | Yes      | - <b>-</b> _ | •          | Yes      | →                | Yes              | →            | Yes                     | →<br>→    | Yes                    | _→                | 3     | ′es →      | Y       | es →     | Yes   | -              | 1     |       |            |    | settings? (You can turn them of                  | off |
|              |            |        | •        | Yes                |              |          |              |            |          |                  |                  |              |                         |           |                        |                   |       |            |         |          |       |                |       |       |            | =  | later)                                           |     |
|              | •          |        | •        |                    | <b>-</b>     |          | -+           |            |          | <b>.</b>         |                  | <b>→</b>     |                         | -         |                        | <b>→</b>          |       | -+         |         | -+       |       | +              | 1     |       |            |    | Yes, Start Enforcing Protection                  |     |
|              |            | Co     | mme      | nt: Me             | asure        | Odde     | urren        | Han        | monic    | <del>53102</del> | -19              |              |                         | -         |                        | -                 |       | -          |         | -        |       | -              | 1     |       |            |    |                                                  |     |
|              | •          |        | Pas      | sed-               | ·02/2        | 5/201    | 3-08         | :55:5      | 52·[E    | lapse            | d·Tim            | e HH         | :MM                     | :ss=(     | 00:00                  | :00.78            | 00]¶  |            |         |          |       |                |       |       |            |    |                                                  |     |
|              | •          | Pha    | ise -    |                    |              |          |              |            |          |                  | agAbs'<br>agAbs' |              | Amag                    | Abs9 -    | <ul> <li>Am</li> </ul> | agAbs             | 11 →  | Amag       | Abs13   | → Amag   | Abs15 |                |       |       |            |    |                                                  |     |
|              |            | А      | -        | 2.1                |              | -+ / ISU | • Am<br>0.04 |            | - 4130   | → Am<br>0.92     |                  |              | 0.034                   | -+        | 0.78                   | . 8               | •     | 0.021      | -+      | 0.004    | -+    | 0.002          | -+    | 0.00  |            |    |                                                  |     |
|              | •          | в      | -        | 2.2                |              | -        | 0.0          |            | -        | 0.89             |                  |              | 0.058                   | -+        | 0.84                   |                   | •     | 0.018      | -       | 0.005    | -+    | 0.002          | -+    | 0.00  |            |    |                                                  |     |
|              | •          | C<br>¶ | <b>→</b> | 2.1                | 52           | -        | 0.0          | 65         | <b>→</b> | 0.94             | - 8              | •            | 0.037                   | -+        | 0.81                   | .0 -              | •     | 0.012      | -       | 0.006    | -     | 0.003          | -     | 0.00  | 4          |    |                                                  |     |
|              | •          | Ø.s    | ten      | 12.                | $v_{\rm Us}$ | er Pr    | omn          | t-ITA      | C 1      | [01]¶            |                  |              |                         |           |                        |                   |       |            |         |          |       |                |       |       |            | _  |                                                  |     |
|              |            | _ ~    | ſ        | -                  |              |          | - mp         |            |          |                  |                  |              |                         |           |                        |                   |       |            |         |          |       |                |       |       |            | ±  | See also                                         |     |
|              |            |        | Pe       | rforr              | nth          | e foll   | owi          | ngs        | teps     | prio             | rtop             | ress         | ingth                   | e'PA      | SS'b                   | utto              | nto   | contin     | ue:¶    |          |       |                |       |       |            | 0  | Restrict permission                              |     |
|              |            |        |          | • Con              |              |          |              |            |          |                  |                  |              | fthei                   |           |                        |                   |       |            |         |          |       |                |       |       |            | Ŧ  |                                                  |     |
| ge: 3 of 4 W | ords: 920  | ) 🛛    | 0        | 1                  |              |          |              |            |          |                  |                  |              |                         |           |                        |                   |       |            |         |          |       |                |       | 🔲 🛱   | <b>I</b> 2 | 1  | 111% 🖂 🗸 🗸                                       | -(  |

9. Deleting the Value section of Step 11 and converting the tab delimited measurement data to a Word table yields the result shown below.



- 10. When all formatting changes are completed, you can lock down the file using the same "Restrict Formatting and Editing" column on the right side of the screen.
- 11. To set back to the original report restrictions, Select 2. Editing restrictions and check the box "Allow only this type of editing in the document:". Select "Filling in forms" from the dropdown box and click the "Yes, Start Enforcing Protection" button below.
- 12. When prompted for a password, you can provide one if desired or leave blank and click on the OK button. Leaving password field blank means no password is required to unlock the document.

| Image: Specific provide and service provide and servide and service provide and servide and ser | Authors - Editing<br>Protect                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>Restrict Formatting and Editing * X</li> <li>I. Formatting restrictions</li> <li>I. Init formating to a selection of styles</li> <li>Settings</li> <li>2. Editing restrictions</li> <li>J. Alow only this type of editing in the document:</li> <li>Filing in forms</li> <li>Start enforcement</li> <li>Are you ready to apply these settings? (You can turn them off latega</li> <li>Yee, Start Enforcing Protection</li> </ul> |
| NOTES:     "This testis used to verify that three phase, 115 Volt, 400 Hz power"     utilization equipment utilizes only 115 Volt line-to-neutral power, current inrush is within limits, and has balancedower. After power factor is within limits, and does not use half-waverectification."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ▼         See also           0         Restrict permission           2         111% ○         •                                                                                                                                                                                                                                                                                                                                           |

13. Any changes should be saved using the orignal file name that was assigned when first created.

# 8 MIL-STD-704F Test Application Considerations

This section explains several implementation and application specific considerations that apply to some of the MIL-STD-704F test sequence implementations.

While most test methods are relatively straightforward in that they apply a sequence of voltage and frequency setting for a set period of time, some test require additional equipment and hardware to set up and run. This chapter describes some of these test methods as defined by their number xxxNNN, where "xxx" stands for the various Power Groups supported and "NNN" for the test number.

### 8.1 Transition Time Setting – Most xVF Tests

The MIL-STD-704F option test sequences for variable frequency power groups were implemented using the UPC Controller Transient Time function to prevent sudden frequency jumps during testing. In particular when changing from one steady state frequency condition to a different, a delta of up to 400Hz may be executed. Such a large frequency jump could damage UUT's, especially those that have motors or other electromechanical components. To avoid potential damage to the UUT, frequency change other than those called out specifically in the Mil-Std-704 test standard are executed with a frequency slew rate of no more than 10Hz/sec. Thus when changing between a 800Hz test condition and a 400Hz test condition, the slew time will be 40 seconds. This setting is generally effected in the second test step of each xVF test sequence.

Since the Transient Time setting on the UPC controller is a global setting and remains in effect until changed, at the end of each variable frequency test sequence (SVF and TVF power groups), the transient time on the UPC controller is set back to zero. This means any programmed changes for voltage or frequency made by the user from the front panel or over the bus between test runs will occur instantaneously, which is generally the default setting.

If however a test is aborted prematurely and not allowed to complete through its final test steps, the Transient Time parameter will remain at its set value.

The test Objective Tab message of those test sequences that use a Transition Time setting other than 0.0 secs contains a message to this affect.

UPC Controller Transition Time is set to 40 secs in Step #2 to slew frequency changes no faster than 10Hz/sec. At the end of the test sequence, this setting is reset to 0.0 secs. If you abort this test sequence prematurely, you need to set this parameter back from the UPC control panel or it will remain set to this value.

| Test Sequence - SIM::141517_      | v520 - SVF_201_FORM2(4)-800.tsq   |                                          |          |
|-----------------------------------|-----------------------------------|------------------------------------------|----------|
| Objective Preferences Step Val    | ue/Comment Step Result            |                                          |          |
| Step 2 - 强 Control                |                                   |                                          |          |
| Item Value                        | e 👍 Right-click table to add/remo | ve item. Drag "Item" column to reorder   | rows.    |
| Output Enable Off                 |                                   |                                          |          |
| CSC On<br>Transition Time 40.0000 |                                   |                                          |          |
| Hansidon Hine 40.0000             |                                   |                                          |          |
|                                   |                                   |                                          |          |
|                                   |                                   |                                          |          |
|                                   |                                   |                                          |          |
|                                   |                                   |                                          |          |
| Comment: Open Output Relays, C    | SC ON. Ttr = 40.0 secs            |                                          |          |
| Idle                              | Step Tota                         | Elapsed Rema                             |          |
| Tule                              |                                   |                                          | 4.0475   |
| 🕨 🗄 📲 📲 🗳 🎯 💆                     |                                   |                                          | 0.0000   |
| Step Description                  | Value                             | Comment                                  | Result 🔺 |
| 🗹 1 🗳 Script                      | Set report format flags           | Initialize Report format flags.          |          |
| 🗹 🛛 2 🚂 Control                   | Output Enable,CSC,Transition Time | Open Output Relays, CSC ON, <u>Ttr</u> : | 40.0     |

Figure 2: Transition Time Control Setting in xVF Test Files

### 8.2 Method xxx101 – Load Measurements

This test is performed to characterize the UUT load characteristics. It is done by applying nominal voltage (115Vac RMS L-N / 200Vac RMS L-L) and nominal frequency based on power group:

| Power Groups | Test Frequencies              |
|--------------|-------------------------------|
| SAC and TAC  | 400Hz                         |
| SXF          | 60Hz                          |
| SVF and TVD  | 400Hz, 360Hz, 600Hz and 800Hz |
| LDC and HDC  | DC                            |

### 8.2.1 Additional Measurement Equipment

Because the main focus of this test is to capture voltage and current parameters and waveforms, it is recommended to use additional measurement equipment to augment the measurement functions of the AC Power Source used. In particular, in-rush current may be better documented by capturing it on a digital storage scope of using a dedicated high precision power analyzer that has this functionality built in. Although all measurement data required for this test is acquired by the AC Power Source as part of the xxx101 test, a digital scope with higher resolution than the UPC controller is recommended to verify the current wave shape and check for half wave rectification at the UUT AC input.

# 8.2.2 Test Setups xxx101

The recommended test setup for single phase UUT testing is shown in Figure 3 below.

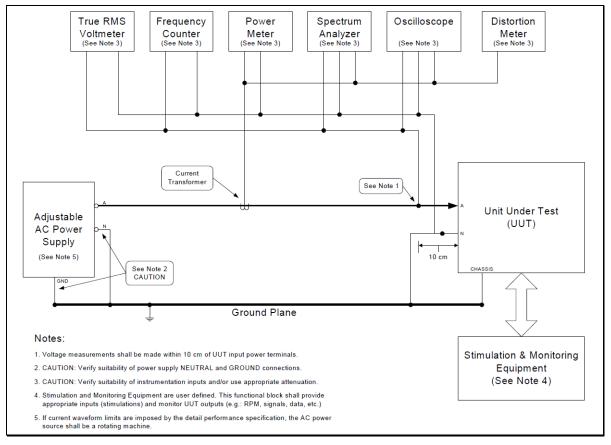
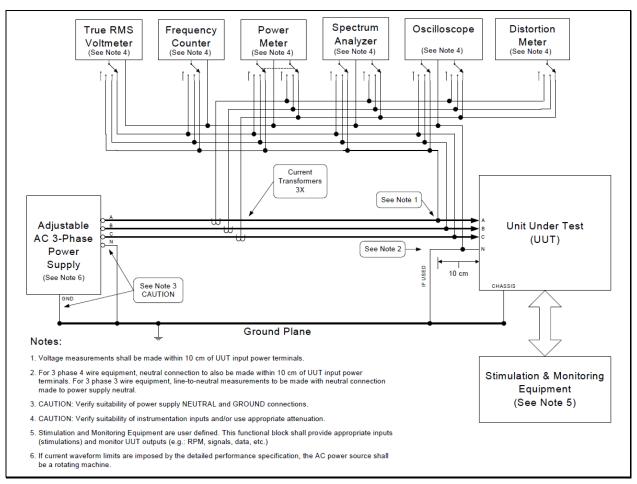




Figure 3: Method xxx101 Single Phase UUT Test Setup



#### The recommended test setup for single phase UUT testing is shown in Figure x below.



### 8.2.3 Measurement Data Tables xxx101

The measurement data to be document for single phase AC tests is shown in Table 1. The measurement data requirement table for three phase AC tests is shown in Table 2. For DC tests, Table 3 applies instead.

| Test performed   | <b>l at</b> Nomir | nal <b>steady</b> | state | frequency  |          |             |    |           |          |
|------------------|-------------------|-------------------|-------|------------|----------|-------------|----|-----------|----------|
| Load and Powe    | r Factor          |                   |       |            |          |             |    |           |          |
| Voltage          | 2                 | Freque            | ncy   | Volt-Am    | р        | Power Fact  | or | Pass/Fail | Comments |
|                  | Vrms              |                   | Hz    |            | VA       |             | PF |           |          |
| Rectification Ty | /pe               |                   |       |            |          |             |    |           |          |
|                  |                   |                   |       |            |          |             |    | Pass/Fail |          |
| Does not use ha  | alf-wave r        | ectificatio       | n.    |            |          |             |    |           |          |
| Current Wavef    | orm Meas          | urements          | ;     |            |          |             |    |           |          |
| Total            | Current D         | Distortion        |       | Ci         | urrent S | pectrum     |    | Pass/Fail | Comments |
|                  |                   |                   |       | Attach     |          | Amplitude   |    |           |          |
|                  | 9                 | % Distortio       | on    | Spectrum P | Plot     | Vs. Frequen | су |           |          |
| ĺ                |                   |                   |       |            |          |             |    |           |          |

Table 1: Method xxx101 Measurement Data Table - Single Phase

| Test Per  | formed at    | Nominal s   | teady state | frequency | ,        |           |          |         |           |          |
|-----------|--------------|-------------|-------------|-----------|----------|-----------|----------|---------|-----------|----------|
| Inrush C  | urrent       |             |             |           |          |           |          |         |           |          |
| Phase     | Inrush       |             | Perce       | ent of    | Oscillor | scope Tra | <u> </u> |         | Pass/Fail | Comments |
|           | Current      |             | Rated       | Current   | Uschios  | scope na  | Le       |         | Pass/Fall | comments |
| А         |              | Arms        |             | %         | Attach   | Trace     | Arms v   | s. Time |           |          |
| В         |              | Arms        | s %         |           | Attach   | Trace     | Arms v   | s. Time |           |          |
| С         |              | Arms        |             | %         | Attach   | Trace     | Arms v   | s. Time |           |          |
| Balanced  | l Load and   | Power Fa    | ctor        |           |          |           |          |         |           |          |
| Phase     | Vo           | tage        | Frequenc    | у         | Volt-An  | np        | Power    | Factor  | Pass/Fail | Comments |
| А         |              | Vrms        |             | Hz        |          | VA        |          | pf      |           |          |
| В         |              | Vrms        |             |           |          | VA        |          | pf      |           |          |
| С         |              | Vrms        |             |           |          | VA        |          | pf      |           |          |
|           |              |             |             | Total VA  |          | VA        |          |         |           |          |
| Maxi      |              |             | ference bet |           |          | VA        |          |         |           |          |
|           | -            | nd lowest   | phase load) |           |          |           |          |         |           |          |
| Rectifica | tion Type    |             |             |           |          |           |          |         | •         |          |
|           |              |             |             |           |          |           |          |         | Pass/Fail | Comments |
| Does not  | : use half-w | vave rectif | ication.    |           |          |           |          |         |           |          |
| Current   | Waveform     | Measure     | ments       |           |          |           |          |         | •         |          |
| Phase     | Tot          | al Current  | t           |           | Current  | Spectrum  | 1        |         | Pass/Fail | Comments |
| А         |              | % Distor    | rtion       | Attach    |          | Ar        | nplitude |         |           |          |
|           |              |             |             | Spectrum  | Plot     | Vs.       | Frequenc | ÿ       |           |          |
| В         |              | % Distor    | rtion       | Attach    |          | Ar        | nplitude |         |           |          |
|           |              |             |             | Spectrum  | Plot     | Vs.       | Frequenc | ÿ       |           |          |
| С         |              | % Distor    | rtion       | Attach    |          | Ar        | nplitude |         |           |          |
|           | Spectru      |             |             |           | Plot     | Vs.       | Frequenc | ÿ       |           |          |

Table 2: Method xxx101 Measurement Data Table - Three Phase

| Test Performed at Nominal Voltage |                      |                         |             |          |
|-----------------------------------|----------------------|-------------------------|-------------|----------|
| Parameter                         |                      |                         | Pass / Fail | Comments |
| Inrush Current                    |                      | Amps                    |             |          |
| Voltage                           |                      | Vdc                     | N/A         |          |
| Load (VA)                         |                      | VA                      |             |          |
| Total Current<br>Distortion       |                      | % Current Distortion    |             |          |
| Current Spectrum                  | Attach Spectrum Plot | Amplitude vs. Frequency |             |          |

Table 3: Method xxx101 Measurement Data Table - DC

#### 8.3 Method xxx106 - Voltage Distortion Spectrum Tests

This test applies a series of high frequency, low amplitude voltage component superimposed on the nominal voltage and frequency sine wave to the UUT.

#### 8.3.1 Test Setups xxx106

This typically requires the use of a Variable Frequency Power Source or Function Generator capable of producing these high frequency signals. The output of the Variable Frequency generator is coupled onto the AC Power Source output using a coupling transformer. Notice the required low pass filter inserted at the output of the AC Power Source to prevent the high frequency components from disrupting the AC power source output stage.

The recommended test setup for single phase UUT testing is shown in Figure 5 below. For three phase UUT's, a similar setup is used but the coupling transformer is moved from phase to phase to test all three phases, one at a time. The same is true for the measurement equipment. Refer to Figure 6.

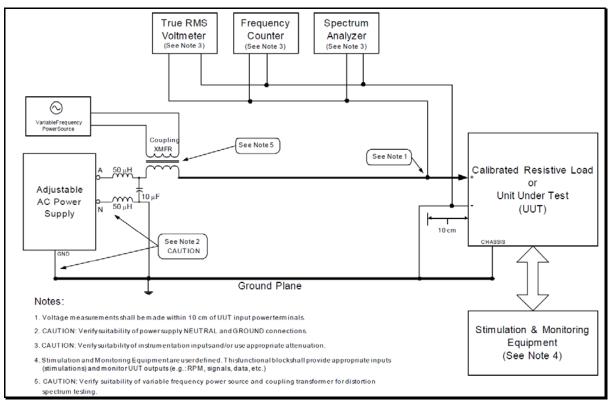



Figure 5: Method xxx106 Single Phase UUT Test Setup

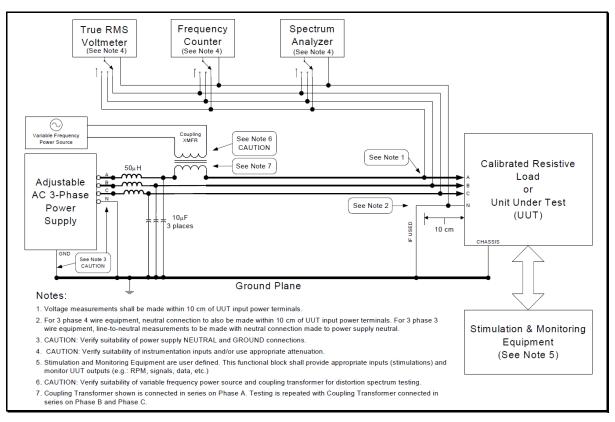



Figure 6: Method xxx106 Three Phase UUT Test Setup

#### 8.3.2 Alternative Setup: UPC Analog Input

Finding a suitable Coupling Transformer that can handle the required maximum UUT load current and still supports the 10 KHz bandwidth required for this test is not trivial.

A more practical solution is to use the Auxiliary Inputs on the AUXILIARY DDB25 connector (J5) of the UPC controller. Refer to J5 connector pin out on the right.

This input is summed with the internal oscillator signal of the AC Power Source to produce the required voltage distortion on the output of the Source.

The corresponding Test Setup is shown in Figure 7.

| LV COMMON                       | 14  | 1<br>  1 |                    |
|---------------------------------|-----|----------|--------------------|
| LV COMMON<br>TRANSIENT PEDESTAL | 15  | 2        |                    |
| LV COMMON                       |     | 3        |                    |
| DRM                             | 16  | 4        |                    |
| LV COMMON                       | 17  | 14       |                    |
| SYNC OUT                        | 1   | 5        |                    |
|                                 | 18  |          |                    |
|                                 |     | 6        | REAR               |
|                                 | 19  |          | PANEL<br>CONNECTOR |
| ΦA AM LO                        | 20  | 7        | J5                 |
| ΦA AM HI                        | 20  | 8        | DB-25              |
| DB AM LO                        | 21  | 10       | 06-25              |
| ΦB AM HI                        | 121 | 9        |                    |
| DC AM LO                        | 22  | 10       |                    |
| ΦC AM HI                        | 1   | 10       |                    |
| ©A AUX IN LO                    | 23  | 1.0      |                    |
| ΦA AUX IN HI                    | 120 | 11       | Analog             |
| ΦB AUX IN LO                    | 24  | 1        | Auxiliary          |
| ΦB AUX IN HI                    | 124 | 12       | Inputs             |
| DC AUX IN LO                    | 25  | 1.2      | Phase              |
| ΦC AUX IN HI                    | 120 | 13       | А-В-С              |
|                                 |     | 1        |                    |
|                                 |     |          |                    |

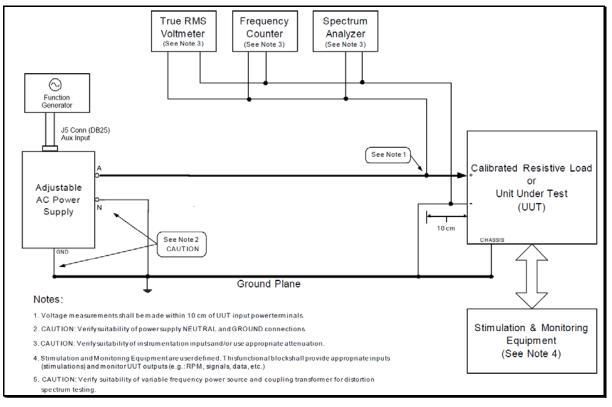



Figure 7: Method xxx106 Test Setup Using Auxiliary Input

Note that the gain of the Analog Input is 25 for FORM1 or FORM3 mode of operation so the output of the Variable Frequency generator must be set to a suitable level as indicated in the last column of the table below for the TVF106 tests. For three phase applications, the voltage distortion is applied one phase at a time so only a single Variable Frequency generator is required.

| Test Condition | Frequency of<br>Voltage Distortion | Amplitude of Voltage Distortion<br>(Vrms) | Amplitude of Analog Input Signal<br>(mVrms) |
|----------------|------------------------------------|-------------------------------------------|---------------------------------------------|
| А              | 50 Hz                              | 0.316                                     | 12.64                                       |
| В              | 100 Hz                             | 0.316                                     | 12.64                                       |
| С              | 500 Hz                             | 1.580                                     | 63.2                                        |
| D              | 1 kHz                              | 3.160                                     | 3.160                                       |
| E              | 2 kHz                              | 3.160                                     | 126.4                                       |
| F              | 3 kHz                              | 3.160                                     | 126.4                                       |
| G              | 5 kHz                              | 1.900                                     | 76.0                                        |
| Н              | 10 kHz                             | 0.950                                     | 38.0                                        |

#### 8.3.3 Measurements xxx106

The measurement data to be document for single phase (Phase A) is shown in Table 9. For three phase UUT's, measurement data is acquired for each phase (Phase A, B, C).

| Test Condition  |                  | Parameters            |                    |              |                |           |  |  |
|-----------------|------------------|-----------------------|--------------------|--------------|----------------|-----------|--|--|
|                 | Voltage          | Frequency             | Frequency of       | Amplitude of | Time           | Pass/Fail |  |  |
|                 |                  |                       | Voltage            | Voltage      | Duration at    |           |  |  |
|                 |                  |                       | Distortion         | Distortion   | test condition |           |  |  |
| Testing perform | ned at Nominal F | requency (SAC, TAC, S | XF) or Frequencies | (SVF, TVF)   |                |           |  |  |
| Α               | Vrms             | Hz                    | Hz                 | Vrms         | min            |           |  |  |
| В               | Vrms             | Hz                    | Hz                 | Vrms         | min            |           |  |  |
| С               | Vrms             | Hz                    | Hz                 | Vrms         | min            |           |  |  |
| D               | Vrms             | Hz                    | kHz                | Vrms         | min            |           |  |  |
| E               | Vrms             | Hz                    | kHz                | Vrms         | min            |           |  |  |
| F               | Vrms             | Hz                    | kHz                | Vrms         | min            |           |  |  |
| G               | Vrms             | Hz                    | kHz                | Vrms         | min            |           |  |  |
| н               | Vrms             | Hz                    | kHz                | Vrms         | min            |           |  |  |

Table 4: Method xxx106 Measurement Data Table - Single Phase

## 8.4 Method xxx107 - Total Voltage Distortion Tests

This test procedure is used to verify that single phase, 115 Volt power utilization equipment operates and maintains specified performance when subjected to voltage waveforms having a distortion factor of 5%. The voltage distortion is generated on the AC Power Source output using the UPC controller arbitrary wave form generator using the harmonic components specified in the Mil-Std-704 test standard. Refer to Table 5.

| Harmonic    | MIL-STD-704 Rev B - F<br>Percent of Fund. |
|-------------|-------------------------------------------|
| Fundamental | 100%                                      |
| 2nd         | 0%                                        |
| 3rd         | 2.75%                                     |
| 4th         | 0%                                        |
| 5th         | 2.75%                                     |
| 6th         | 0%                                        |
| 7th         | 1.97%                                     |
| 8th         | 0%                                        |
| 9th         | 1.53%                                     |
| 10th        | 0%                                        |
| 11th        | 1.25%                                     |
| 12th        | 0%                                        |
| 13th        | 1.06%                                     |
| 14th        | 0%                                        |
| 15th        | 0.92%                                     |

Table 5: Method xxx107 Distortion Table

#### 8.4.1 Test Setups xxx107

The recommended test setup for three phase UUT testing is shown in Figure 8 below.

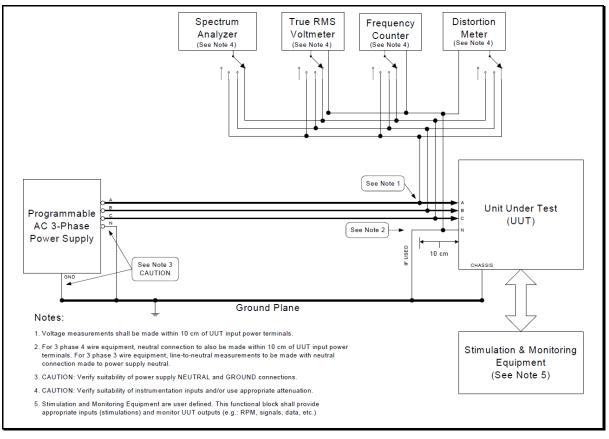



Figure 8: Method xxx107 Test Setup - Three Phase

#### 8.4.2 Measurements

The measurement data to be document for single phase (Phase A) is shown in Table 9. For three phase UUT's, measurement data is acquired for each phase (Phase A, B, C).

| Phase |      | Volta    | Voltage |   | Frequency |             | Voltage Distortion Factor |          | Time Du<br>at T<br>Cond | est     | Performance<br>Pass/Fail |
|-------|------|----------|---------|---|-----------|-------------|---------------------------|----------|-------------------------|---------|--------------------------|
| Α     |      |          | Vrms    |   |           | Hz          |                           | No units |                         | min     |                          |
| В     |      |          | Vrms    |   |           |             |                           | No units |                         |         |                          |
| С     |      |          | Vrms    |   |           |             |                           | No units |                         |         |                          |
|       | Volt | tage Har | rmonics |   | '         | /oltage Har | monics                    |          | Voltage I               | larmoni | cs                       |
|       |      | Phase    | Α       |   |           | Phase       | В                         |          | Pha                     | ase C   |                          |
| Fun   | nd   |          |         | % | Fund      |             | %                         | Fund     |                         |         | %                        |
| 2n    | d    |          |         | % | 2nd       |             | %                         | 2nd      |                         |         | %                        |
| 3rc   | d    |          |         | % | 3rd       |             | %                         | 3rd      |                         |         | %                        |
| 4tl   | h    |          |         | % | 4th       |             | %                         | 4th      |                         |         | %                        |
| 5tl   | h    |          |         | % | 5th       |             | %                         | 5th      |                         |         | %                        |
| 6t    | h    |          |         | % | 6th       |             | %                         | 6th      |                         |         | %                        |
| 7ti   | h    |          |         | % | 7th       |             | %                         | 7th      |                         |         | %                        |
| 8t    | h    |          |         | % | 8th       |             | %                         | 8th      |                         |         | %                        |
| 9t    | h    |          |         | % | 9th       |             | %                         | 9th      |                         |         | %                        |
| 10t   | h    |          |         | % | 10th      |             | %                         | 10th     |                         |         | %                        |
| 11t   | h    |          |         | % | 11th      |             | %                         | 11th     |                         |         | %                        |
| 12t   | :h   |          |         | % | 12th      |             | %                         | 12th     |                         |         | %                        |
| 13t   | h    |          |         | % | 13th      |             | %                         | 13th     |                         |         | %                        |
| 14t   | h    |          |         | % | 14th      |             | %                         | 14th     |                         |         | %                        |
| 15t   | h    |          |         | % | 15th      |             | %                         | 15th     |                         |         | %                        |

### 8.5 Method xxx108 - DC Voltage Offset Tests

This test procedure is used to verify that single phase, 115 Volt power utilization equipment operates and maintains specified performance when subjected to a direct current component of AC voltage. As such, a small DC offset voltage is applied to each phase using both positive and negative polarity.

While some AC Power Source models of other manufacturers allow for programming a DC offset, the small DC offset value required for Mil-Std-704 testing - + or – 100 mV - can be difficult to produce on an AC power source with a 0.1V programming resolution.

#### 8.5.1 Test Setup – xxx108

A better alternative is to use a low voltage range DC Power Supply in series with the AC power source output. Since most DC Supplies are uni-polar, a polarity reversal relay may be used to change polarity or the connection terminals can be swapped as needed. To electrically remove the DC Power Supplies when not in use, a bypass relay can be used as shown – as long as the output of the DC Supply is off.

It is important that both positive and negative output terminal of the DC Power Supply used are floating (NOT grounded) as the DC supply will be floating on the AC output. Also, isolation between the DC Supplies output terminals and chassis must be higher than 120Vrms.

NOTE: Check with the manufacturer of the DC Power Supplies used what the maximum AC Ripple Current rating of the bulk output capacitors is as these caps will see the UUT AC load current in addition to any DC current drawn by the UUT.

The relevant test setup for three phase UUT's is shown in Figure 9. For single phase applications, only one DC supply is needed on the Phase A output of the AC Power Source.

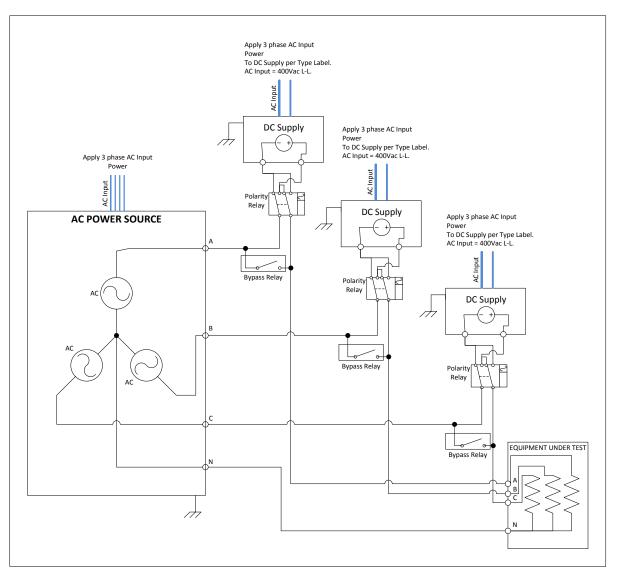



Figure 9: Method xxx108 DC Offset Test Setup - Three Phase

#### 8.6 LDC and HDC DC Power Tests

These test procedures verify MIL-HDBK-704 Section 7 (HDC) and MIL-HDBK-704 Section 8 (LDC) of aircraft electrical power characteristics. Testing DC products is possible through the use of the optional DCR600-20 output module. The DCR module takes three phase AC power and rectifies it do a DC output. By programming the AC voltage, the DC output voltage can be controlled indirectly.

Note: The DCR is sold as a separate hardware option and not included with the Mil-Std704F Software Library.

#### 8.6.1 DCR Option module

The AC/DC rectification performed by the DCR module results in a DC output that not identical in level to the AC RMS value programmed but rather will be about two times higher when using a three phase AC square wave output. Thus, to get 270V DC, program a Line to Neutral voltage of around 135Vac on all three phases in 3 phase mode and select a square wave (Waveform no. 3) instead of a sine wave. This will provide the least amount of AC ripple on the DC output.

The LDC and HDC test sequences were developed with this scaling and waveform selection built in so the correct DC output voltages are obtained. Due to the DCR rectifier's forward voltage drop, the AC to DC scaling ratios are different for 28Vdc testing versus 270Vdc testing and this is also built in to the provided test sequences.

A Vac to Vdc scale factor of 1.99 is used for LDC28VDC test sequences versus 2.027 for HDC270VDC test sequences. This scale factor is determined based on an output load of approximately 5Adc. The formula for calculating the scaling factor is Vdc = (Vac\*scaling) - 1.4.

Depending on the current drawn by the EUT, this ration may have to be adjusted slightly for optimal results. Do facilitate this, all LDC and HDC transient levels are programming in percentage of steady state value so only the steady state AC voltage programmed needs to be edited for each test step.

For most applications, the provided ratios in the test sequences should work ok as is.

## 8.6.2 DC Power Group Test Setup

Test setup between power source and the DCR module is shown in Figure 10. Refer to the DCR600-20 Option Operation Manual, (P/N 150125) for more details on installation and use of the DCR option. This manual is available from the pacificpower.com website under Technical Resources or on the Operation Manual Distribution CD-ROM (P/N 703222) provided with each AC Power Source.



Figure 10: Power Source and DCR module connection

# 9 MIL-STD-704F Test Sequence Coverage

# 9.1 Power Group Coverage

The MIL-STD-704F power groups supported by this option are shown in Table 6.

| Power<br>Group | Description                                                  | Nominal<br>Voltage | Nominal<br>Frequency | Phase<br>Modes |
|----------------|--------------------------------------------------------------|--------------------|----------------------|----------------|
| SAC            | Single-Phase, 400 Hz Constant Frequency, 115V                | 115Vrms L-N        | 400Hz                | Single Phase   |
| TAC            | Three-Phase, 400 Hz Constant Frequency, 115V                 | 115Vrms L-N        | 400Hz                | Three Phase    |
| SVF            | Single-Phase, Variable Frequency, 115 V                      | 115Vrms L-N        | 360 – 800Hz          | Single Phase   |
| TVF            | Three-Phase, Variable Constant Frequency, 115V               | 115Vrms L-N        | 360 – 800Hz          | Three Phase    |
| SXF            | Single-Phase, 60 Hz Constant Frequency, 115V                 | 115Vrms L-N        | 60Hz                 | Single Phase   |
| Power<br>Group | Description                                                  |                    |                      | Phase<br>Modes |
| LDC            | 28VDC utilization equipment MIL-STD-704<br>compliance tests  | 28VDC              |                      | n/a            |
| HDC            | 270VDC utilization equipment MIL-STD-704<br>compliance tests | 270VDC             |                      | n/a            |

Table 6: MIL-STD-704F Option Power Group Coverage

# 9.2 Test Coverage Summary

The MIL-STD-704F test sequence coverage is summarized in Table 7 for AC power groups and Table 8 for DC power groups. Tests marked with "Y" are covered in MIL-STD-704F option. Tests marked with "N/A" are not applicable to the related sections for MIL-STD-704F.

| Test | Description                                   | SAC | ТАС | SVF | TVF | SXF | Notes                                                                                                    |  |  |
|------|-----------------------------------------------|-----|-----|-----|-----|-----|----------------------------------------------------------------------------------------------------------|--|--|
| Norm | Normal Operation (1xx)                        |     |     |     |     |     |                                                                                                          |  |  |
| 101  | Load and Current<br>Harmonics<br>Measurements | Y   | Y   | Y   | Y   | Y   | Additional Power<br>Measurement Equipment<br>recommended for capturing for<br>UUT performance.           |  |  |
| 102  | Steady State Limits                           | Y   | Y   | Y   | Y   | Y   |                                                                                                          |  |  |
| 103  | Voltage Phase<br>Difference                   | N/A |     | N/A |     | N/A | Not applicable for Single phase UUT's.                                                                   |  |  |
| 104  | Voltage Modulation                            | Y   | Y   | Y   | Y   | Y   |                                                                                                          |  |  |
| 105  | Frequency Modulation                          | Y   | Y   | Y   | Y   | Y   |                                                                                                          |  |  |
| 106  | Voltage Distortion<br>Spectrum                | R   | R   | R   | R   | R   | Requires Function Generator,<br>Spectrum Analyzer, 50uH<br>inductors, 10uF Cap                           |  |  |
| 107  | Total Voltage<br>Distortion                   | Y   | Y   | Y   | Y   | Y   |                                                                                                          |  |  |
| 108  | DC Voltage<br>Component                       | R   | R   | R   | R   | R   | Required additional DC<br>Supplies                                                                       |  |  |
| 109  | Normal Voltage<br>Transients                  | Y   | Y   | Y   | Y   | Y   | Requires Transformer (XFMR)<br>for Three phase or Split Phase<br>mode (FORM2) for Single<br>phase UUT's. |  |  |

| Test   | Description                                      | SAC | TAC | SVF        | TVF | SXF | Notes                                                                                                    |
|--------|--------------------------------------------------|-----|-----|------------|-----|-----|----------------------------------------------------------------------------------------------------------|
| 110    | Normal Frequency<br>Transients                   | Y   | Y   | Y          | Y   | Y   |                                                                                                          |
| Tuened |                                                  |     |     |            |     |     |                                                                                                          |
|        | fer (2xx)                                        |     |     |            |     |     |                                                                                                          |
| 201    | Power Interrupt                                  | Y   | Y   | Y          | Y   | Y   | Requires Transformer (XFMR)<br>for Three phase or Split Phase<br>mode (FORM2) for Single<br>phase UUT's. |
| Abnor  | rmal Operation (3xx)                             |     |     |            |     |     |                                                                                                          |
| 301    | Abnormal Limits for<br>Voltage and<br>Frequency  | Y   | Y   | Y          | Y   | Y   |                                                                                                          |
| 302    | Abnormal Voltage<br>Transients                   | Y   | Y   | Y          | Y   | Y   | Requires Transformer (XFMR)<br>for Three phase or Split Phase<br>mode (FORM2) for Single<br>phase UUT's. |
| 303    | Abnormal Frequency<br>Transients                 | Y   | Y   | Y          | Y   | Y   |                                                                                                          |
| Emerg  | gency Operation (4xx)                            |     | •   | •          | •   | •   |                                                                                                          |
| 401    | Emergency Limits for<br>Voltage and<br>Frequency | Y   | Y   | Y          | Y   | Y   |                                                                                                          |
|        | ·                                                |     | St  | tarting (5 | xx) |     |                                                                                                          |
| 501    | Not Typically Required                           | N/A | N/A | N/A        | N/A | N/A | Not applicable to AC powered equipment                                                                   |
| Powe   | r Failure (6xx)                                  |     |     |            |     |     |                                                                                                          |
| 601    | Power Failure                                    | Y   | Y   | Y          | Y   | Y   |                                                                                                          |
| 602    | One Phase and Two<br>Phase Power Failures        | N/A | Y   | N/A        | Y   | N/A |                                                                                                          |
| 603    | Phase Reversal                                   | Y   | Y   | Y          | Y   | Y   |                                                                                                          |

Table 7: MIL-STD-704F Test Coverage Summary Table – AC Power Groups

Legend:

 $\label{eq: Y = Full support N/A = Not Applicable - No Test Required} Y = Full support N/A = Not Applicable - No Test Required$ 

R = Requires Additional Equipment

Z = Requires Prog-Z option on AC Source

N = Not supported

| Test | Description                                    | LDC | HDC | Notes                         |
|------|------------------------------------------------|-----|-----|-------------------------------|
| 101  | Load Measurements                              | Y   | Y   |                               |
| 102  | Steady State Limits for Voltage (Normal)       | Y   | Y   |                               |
| 103  | Voltage Distortion Spectrum                    | R   | R   | Requires additional equipment |
| 104  | Total Ripple                                   | N   | N   | Test is not supported         |
| 105  | Normal Voltage Transients                      | Y   | Y   |                               |
| 201  | Power Interrupt                                | Y   | Y   |                               |
| 301  | Steady State Limits for Voltage<br>(Abnormal)  | Y   | Y   |                               |
| 302  | Abnormal Voltage Transients                    | Y   | Y   |                               |
| 401  | Steady State Limits for Voltage<br>(Emergency) | Y   | Y   |                               |
| 501  | Starting Voltage Transients                    | Y   | Y   |                               |
| 601  | Power Failure                                  | Y   | Y   |                               |
| 602  | Polarity Reversal                              | Y   | Y   |                               |

Table 8: MIL-STD-704F Test Coverage Summary Table – DC Power Groups

Legend:

R = Requires Additional Equipment

N = Not supported

Y = Full support N/A = Not Applicable – No Test Required Z = Requires Prog-Z option on AC Source

# 9.3 Test Sequence Files by Power Group Tables

For each supported Power Group, the tables in this section show the test numbers, a short description of the test, any comments relating to this test and associated test sequence file names as provided by this option.

NOTE: Depending on the power source used to perform tests with the MIL-STD-704F option, additional equipment may be required if the test or load requirements are beyond the power source capabilities. These additional requirements are specified in the following test section coverage tables, "Comments" column.

| SAC         | Description                                                  | Comments                                                                                    | Test File Name    |
|-------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------|
| Normal Op   | eration                                                      |                                                                                             |                   |
| SAC101      | Three Phase Load and Current Harmonics Measurements          | Additional Power Measurement<br>Equipment recommended for capturing<br>for UUT performance. | SAC_101.tsq       |
| SAC102      | Steady state limits for voltage and frequency                |                                                                                             | SAC_102.tsq       |
| SAC103      | No Test Required                                             |                                                                                             |                   |
| SAC104      | Voltage Modulation                                           |                                                                                             | SAC_104.tsq       |
| SAC105      | Frequency Modulation                                         |                                                                                             | SAC_105.tsq       |
| SAC106      | Voltage Distortion Spectrum                                  | Requires Function Generator, Spectrum<br>Analyzer, 50uH inductors, 10uF Cap                 | SAC_106.tsq       |
| SAC107      | Total Voltage Distortion                                     |                                                                                             | SAC_107.tsq       |
| SAC108      | DC Voltage Component                                         | Requires DC Power Supply                                                                    | SAC_108.tsq       |
| SAC109      | Normal Voltage Transients                                    | Split phase mode                                                                            | SAC_109_FORM2.tsq |
|             | Normal Voltage Transients                                    | Transformer Coupled                                                                         | SAC_109_XFMR.tsq  |
| SAC110      | Normal Frequency Transients                                  |                                                                                             | SAC_110.tsq       |
| Transfer Op | peration                                                     |                                                                                             | 1                 |
| SAC201      | Power Interrupt                                              | Split phase mode                                                                            | SAC_201_FORM2.tsq |
|             | Power Interrupt                                              | Transformer Coupled                                                                         | SAC_201_XFMR.tsq  |
| Abnormal (  | Dperation                                                    |                                                                                             | 1                 |
| SAC301      | Abnormal Frequency Transients (Overfrequency/Underfrequency) |                                                                                             | SAC_301.tsq       |
| SAC302      | Abnormal Voltage Transients (Overvoltage/Undervoltage)       | Split phase mode                                                                            | SAC_302_FORM2.tsq |
|             | Abnormal Voltage Transients (Overvoltage/Undervoltage)       | Transformer Coupled                                                                         | SAC_302_XFMR.tsq  |
| SAC303      | Abnormal Frequency Transients (Overfrequency/Underfrequency  |                                                                                             | SAC_303.tsq       |
| Emergency   | Operation                                                    |                                                                                             | 1                 |
|             |                                                              |                                                                                             | SAC_401.tsq       |

| SAC         | Description                                                              | Comments | Test File Name |
|-------------|--------------------------------------------------------------------------|----------|----------------|
| SAC501      | Not typically required unless specified by EUT performance specification |          |                |
| Power Failu | re Operation                                                             |          |                |
| SAC601      | Power Failure (Single phase)                                             |          | SAC_601.tsq    |
| SAC602      | No Test Required                                                         |          |                |
| SAC603      | Phase Reversal                                                           |          | SAC_603.tsq    |

Table 9: Section Coverage Table - Power Group - SAC

| TAC          | Description                                                              | Comments                                                                                    | Test File Name |
|--------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------|
| Normal Ope   | ration                                                                   |                                                                                             |                |
| TAC101       | Three Phase Load and Current Harmonics Measurements                      | Additional Power Measurement Equipment<br>recommended for capturing for UUT<br>performance. | TAC_101.tsq    |
| TAC102       | Steady state limits for voltage and frequency                            |                                                                                             | TAC_102.tsq    |
| TAC103       | No Test Required                                                         |                                                                                             | TAC_103.tsq    |
| TAC104       | Voltage Modulation                                                       |                                                                                             | TAC_104.tsq    |
| TAC105       | Frequency Modulation                                                     |                                                                                             | TAC_105.tsq    |
| TAC106       | Voltage Distortion Spectrum                                              | Requires Function Generator, Spectrum<br>Analyzer, 50uH inductors, 10uF Cap                 | TAC_106.tsq    |
| TAC107       | Total Voltage Distortion                                                 |                                                                                             | TAC_107.tsq    |
| TAC108       | DC Voltage Component                                                     | Requires DC Power Supply                                                                    | TAC_108.tsq    |
| TAC109       | Normal Voltage Transients                                                |                                                                                             | TAC_109.tsq    |
| TAC110       | Normal Frequency Transients                                              |                                                                                             | TAC_110.tsq    |
| Transfer Ope | eration                                                                  |                                                                                             |                |
| TAC201       | Power Interrupt                                                          |                                                                                             | TAC_201.tsq    |
| Abnormal O   | peration                                                                 |                                                                                             |                |
| TAC301       | Abnormal Frequency Transients (Overfrequency/Underfrequency              |                                                                                             | TAC_301.tsq    |
| TAC302       | Abnormal Voltage Transients (Overvoltage/Undervoltage)                   |                                                                                             | TAC_302.tsq    |
| TAC303       | Abnormal Frequency Transients (Overfrequency/Underfrequency              |                                                                                             | TAC_303.tsq    |
| Emergency C  | Dperation                                                                |                                                                                             |                |
| TAC401       | Emergency Limits for voltage and frequency                               |                                                                                             | TAC_401.tsq    |
| Starting Ope | ration                                                                   |                                                                                             |                |
| TAC501       | Not typically required unless specified by EUT performance specification |                                                                                             |                |
| Power Failur | e Operation                                                              | 1                                                                                           |                |

| TAC    | Description                      | Comments | Test File Name |
|--------|----------------------------------|----------|----------------|
| TAC601 | Power Failure (Three phase)      |          | TAC_601.tsq    |
| TAC602 | One and Two Phase Power Failures |          | TAC_602.tsq    |
| TAC603 | Phase Reversal                   |          | TAC_603.tsq    |

Table 10: Section Coverage Table - Power Group – TAC

| SVF       | Description                                         | Comments                                                                                    | Test File Name           |
|-----------|-----------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------|
| Normal Op | peration                                            |                                                                                             |                          |
| SVF101    | Three Phase Load and Current Harmonics Measurements | Additional Power Measurement<br>Equipment recommended for capturing<br>for UUT performance. | SVF_101.tsq              |
| SVF102    | Steady state limits for voltage and frequency       |                                                                                             | SVF_102.tsq              |
| SVF103    | No Test Required                                    |                                                                                             |                          |
| SVF104    | Voltage Modulation                                  | Test @ 400Hz                                                                                | SVF_104(1)-400.tsq       |
|           | Voltage Modulation                                  | Test @ 360Hz                                                                                | SVF_104(2)-360.tsq       |
|           | Voltage Modulation                                  | Test @ 600Hz                                                                                | SVF_104(3)-600.tsq       |
|           | Voltage Modulation                                  | Test @ 800Hz                                                                                | SVF_104(4)-800.tsq       |
| SVF105    | Frequency Modulation                                | Test @ 400Hz                                                                                | SVF_105(1)-400.tsq       |
|           | Frequency Modulation                                | Test @ 360Hz                                                                                | SVF_105(2)-360.tsq       |
|           | Frequency Modulation                                | Test @ 600Hz                                                                                | SVF_105(3)-600.tsq       |
|           | Frequency Modulation                                | Test @ 800Hz                                                                                | SVF_105(4)-800.tsq       |
| SVF106    | Voltage Distortion Spectrum                         | Requires Function Generator, Spectrum                                                       | SVF_106(1)-400.tsq       |
|           | Voltage Distortion Spectrum                         | Analyzer, 50uH inductors, 10uF Cap                                                          | SVF_106(2)-360.tsq       |
|           | Voltage Distortion Spectrum                         |                                                                                             | SVF_106(3)-600.tsq       |
|           | Voltage Distortion Spectrum                         |                                                                                             | SVF_106(4)-800.tsq       |
| SVF107    | Total Voltage Distortion                            |                                                                                             | SVF_107.tsq              |
| SVF108    | DC Voltage Component                                | Requires DC Power Supply                                                                    | SVF_108.tsq              |
| SVF109    | Normal Voltage Transients                           | Test @ 400Hz, Split phase mode                                                              | SVF_109_FORM2(1)-400.tsq |
|           | Normal Voltage Transients                           | Test @ 360Hz, Split phase mode                                                              | SVF_109_FORM2(2)-360.tsq |
|           | Normal Voltage Transients                           | Test @ 600Hz, Split phase mode                                                              | SVF_109_FORM2(3)-600.tsq |
|           | Normal Voltage Transients                           | Test @ 800Hz, Split phase mode                                                              | SVF_109_FORM2(4)-800.tsq |
|           | Normal Voltage Transients                           | Test @ 400Hz, Transformer Coupled                                                           | SVF_109_XFMR(1)-400.tsq  |

| SVF        | Description                                                 | Comments                           | Test File Name            |
|------------|-------------------------------------------------------------|------------------------------------|---------------------------|
|            | Normal Voltage Transients                                   | Test @ 3600Hz, Transformer Coupled | SVF_109_XFMR(2)-360.tsq   |
|            | Normal Voltage Transients                                   | Test @ 600Hz, Transformer Coupled  | SVF_109_XFMR(3)-600.tsq   |
|            | Normal Voltage Transients                                   | Test @ 800Hz, Transformer Coupled  | SVF_109_XFMR(4)-800.tsq   |
| SVF110     | Normal Frequency Transients                                 |                                    | SVF_110.tsq               |
| Transfer O | peration                                                    |                                    |                           |
| SVF201     | Power Interrupt                                             | Test @ 400Hz, Split phase mode     | SVF_201_FORM2(1)-4000.tsq |
|            | Power Interrupt                                             | Test @ 360Hz, Split phase mode     | SVF_201_FORM2(2)-360.tsq  |
|            | Power Interrupt                                             | Test @ 600Hz, Split phase mode     | SVF_201_FORM2(3)-600.tsq  |
|            | Power Interrupt                                             | Test @ 800Hz, Split phase mode     | SVF_201_FORM2(4)-800.tsq  |
|            | Power Interrupt                                             | Test @ 400Hz, Transformer Coupled  | SVF_201_XFMR(1)-400.tsq   |
|            | Power Interrupt                                             | Test @ 360Hz, Transformer Coupled  | SVF_201_XFMR(2)-360.tsq   |
|            | Power Interrupt                                             | Test @ 600Hz, Transformer Coupled  | SVF_201_XFMR(3)-600.tsq   |
|            | Power Interrupt                                             | Test @ 800Hz, Transformer Coupled  | SVF_201_XFMR(4)-800.tsq   |
| Abnormal ( | Operation                                                   |                                    |                           |
| SVF301     | Abnormal Frequency Transients (Overfrequency/Underfrequency |                                    | SVF_301.tsq               |
| SVF302     | Abnormal Voltage Transients (Overvoltage/Undervoltage)      | Test @ 400Hz, Split phase mode     | SVF_302_FORM2(1)-400.tsq  |
|            | Abnormal Voltage Transients (Overvoltage/Undervoltage)      | Test @ 360Hz, Split phase mode     | SVF_302_FORM2(2)-400.tsq  |
|            | Abnormal Voltage Transients (Overvoltage/Undervoltage)      | Test @ 600Hz, Split phase mode     | SVF_302_FORM2(3)-600.tsq  |
|            | Abnormal Voltage Transients (Overvoltage/Undervoltage)      | Test @ 800Hz, Split phase mode     | SVF_302_FORM2(4)-800.tsq  |
|            | Abnormal Voltage Transients (Overvoltage/Undervoltage)      | Test @ 400Hz, Transformer Coupled  | SVF_302_XFMR(1)-400.tsq   |
|            | Abnormal Voltage Transients (Overvoltage/Undervoltage)      | Test @ 360Hz, Transformer Coupled  | SVF_302_XFMR(2)-360.tsq   |
|            | Abnormal Voltage Transients (Overvoltage/Undervoltage)      | Test @ 600Hz, Transformer Coupled  | SVF_302_XFMR(3)-600.tsq   |
|            | Abnormal Voltage Transients (Overvoltage/Undervoltage)      | Test @ 800Hz, Transformer Coupled  | SVF_302_XFMR(4)-800.tsq   |
|            | Abnormal Frequency Transients (Overfrequency/Underfrequency |                                    | SVF_303.tsq               |

| SVF         | Description                                                              | Comments | Test File Name |
|-------------|--------------------------------------------------------------------------|----------|----------------|
| SVF401      | Emergency Limits for voltage and frequency                               |          | SVF_401.tsq    |
| Starting Op | eration                                                                  |          |                |
| SVF501      | Not typically required unless specified by EUT performance specification |          |                |
| Power Failu | ire Operation                                                            |          |                |
| SVF601      | Power Failure (Single phase)                                             |          | SVF_601.tsq    |
| SVF602      | No Test Required                                                         |          |                |
| SVF603      | Phase Reversal                                                           |          | SVF_603.tsq    |

 Table 11: Section Coverage Table - Power Group - SVF

| TVF       | Description                                         | Comments                                                                                    | Test File Name     |
|-----------|-----------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------|
| Normal Op | eration                                             |                                                                                             |                    |
| TVF101    | Three Phase Load and Current Harmonics Measurements | Additional Power Measurement<br>Equipment recommended for capturing<br>for UUT performance. | TVF_101.tsq        |
| TVF102    | Steady state limits for voltage and frequency       |                                                                                             | TVF_102.tsq        |
| TVF103    | No Test Required                                    |                                                                                             | TVF_103.tsq        |
| TVF104    | Voltage Modulation                                  | Test @ 400Hz                                                                                | TVF_104(1)-400.tsq |
|           | Voltage Modulation                                  | Test @ 360Hz                                                                                | TVF_104(2)-360.tsq |
|           | Voltage Modulation                                  | Test @ 600Hz                                                                                | TVF_104(3)-600.tsq |
|           | Voltage Modulation                                  | Test @ 800Hz                                                                                | TVF_104(4)-800.tsq |
| TVF105    | Frequency Modulation                                | Test @ 400Hz                                                                                | TVF_105(1)-400.tsq |
|           | Frequency Modulation                                | Test @ 360Hz                                                                                | TVF_105(2)-360.tsq |
|           | Frequency Modulation                                | Test @ 600Hz                                                                                | TVF_105(3)-600.tsq |
|           | Frequency Modulation                                | Test @ 800Hz                                                                                | TVF_105(3)-800.tsq |
| TVF106    | Voltage Distortion Spectrum                         | Requires Function Generator, Spectrum                                                       | TVF_106(1)-400.tsq |
|           | Voltage Distortion Spectrum                         | Analyzer, 50uH inductors, 10uF Cap                                                          | TVF_106(2)-360.tsq |
|           | Voltage Distortion Spectrum                         |                                                                                             | TVF_106(3)-600.tsq |
|           | Voltage Distortion Spectrum                         |                                                                                             | TVF_106(4)-800.tsq |
| TVF107    | Total Voltage Distortion                            |                                                                                             | TVF_107.tsq        |
| TVF108    | DC Voltage Component                                | Requires DC Power Supply                                                                    | TVF_108.tsq        |
| TVF109    | Normal Voltage Transients                           | Test @ 400Hz                                                                                | TVF_109(1)-400.tsq |
|           | Normal Voltage Transients                           | Test @ 360Hz                                                                                | TVF_109(2)-360.tsq |
|           | Normal Voltage Transients                           | Test @ 600Hz                                                                                | TVF_109(3)-600.tsq |
|           | Normal Voltage Transients                           | Test @ 800Hz                                                                                | TVF_109(4)-800.tsq |
| TVF110    | Normal Frequency Transients                         |                                                                                             | TVF_110.tsq        |

| TVF         | Description                                                              | Comments     | Test File Name     |
|-------------|--------------------------------------------------------------------------|--------------|--------------------|
| Transfer O  | peration                                                                 |              |                    |
| TVF201      | Power Interrupt                                                          | Test @ 400Hz | TVF_201(1)-400.tsq |
|             | Power Interrupt                                                          | Test @ 360Hz | TVF_201(2)-360.tsq |
|             | Power Interrupt                                                          | Test @ 600Hz | TVF_201(3)-600.tsq |
|             | Power Interrupt                                                          | Test @ 800Hz | TVF_201(4)-800.tsq |
| Abnormal (  | Operation                                                                | 1            |                    |
| TVF301      | Abnormal Frequency Transients (Overfrequency/Underfrequency              |              | TVF_301.tsq        |
| TVF302      | Abnormal Voltage Transients (Overvoltage/Undervoltage)                   | Test @ 400Hz | TVF_302(1)-400.tsq |
|             | Abnormal Voltage Transients (Overvoltage/Undervoltage)                   | Test @ 360Hz | TVF_302(2)-360.tsq |
|             | Abnormal Voltage Transients (Overvoltage/Undervoltage)                   | Test @ 600Hz | TVF_302(3)-600.tsq |
|             | Abnormal Voltage Transients (Overvoltage/Undervoltage)                   | Test @ 800Hz | TVF_302(4)-800.tsq |
| TVF303      | Abnormal Frequency Transients (Overfrequency/Underfrequency TVF_3        |              | TVF_303.tsq        |
| Emergency   | Operation                                                                |              |                    |
| TVF401      | Emergency Limits for voltage and frequency                               |              | TVF_401.tsq        |
| Starting Op | peration                                                                 | 1            |                    |
| SVF501      | Not typically required unless specified by EUT performance specification |              |                    |
| Power Failu | ure Operation                                                            | •            |                    |
| TVF601      | Power Failure (Three phase)                                              |              | TVF_601.tsq        |
| TVF602      | One and Two Phase Power Failures                                         | Test @ 400Hz | TVF_602(1)-400.tsq |
|             | One and Two Phase Power Failures                                         | Test @ 360Hz | TVF_602(2)-360.tsq |
|             | One and Two Phase Power Failures                                         | Test @ 600Hz | TVF_602(3)-600.tsq |
|             | One and Two Phase Power Failures                                         | Test @ 800Hz | TVF_602(4)-800.tsq |
| TVF603      | Phase Reversal                                                           |              | TVF_603.tsq        |

Table 12: Section Coverage Table - Power Group - TVF

| SXF         | Description                                                    | Comments                                                                              | Test File Name    |
|-------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------|
| Normal Op   | eration                                                        |                                                                                       |                   |
| SXF101      | Three Phase Load and Current Harmonics<br>Measurements         | Additional Power Measurement Equipment recommended for capturing for UUT performance. | SXF_101.tsq       |
| SXF102      | Steady state limits for voltage and frequency                  |                                                                                       | SXF_102.tsq       |
| SXF103      | No Test Required                                               |                                                                                       | SXF_103.tsq       |
| SXF104      | Voltage Modulation                                             |                                                                                       | SXF_104.tsq       |
| SXF105      | Frequency Modulation                                           |                                                                                       | SXF_105.tsq       |
| SXF106      | Voltage Distortion Spectrum                                    | Requires Function Generator, Spectrum Analyzer,<br>50uH inductors, 10uF Cap           | SXF_106.tsq       |
| SXF107      | Total Voltage Distortion                                       |                                                                                       | SXF_107.tsq       |
| SXF108      | DC Voltage Component                                           | Requires DC Power Supply                                                              | SXF_108.tsq       |
| SXF109      | Normal Voltage Transients                                      | Split phase mode                                                                      | SXF_109_FORM2.tsq |
|             | Normal Voltage Transients                                      | Transformer Coupled                                                                   | SXF_109_XFMR.tsq  |
| SXF110      | Normal Frequency Transients                                    |                                                                                       | SXF_110.tsq       |
| Transfer Op | peration                                                       |                                                                                       |                   |
|             | Power Interrupt                                                |                                                                                       | SXF_201.tsq       |
| Abnormal (  | peration                                                       |                                                                                       |                   |
| SXF301      | Abnormal Frequency Transients<br>(Overfrequency/Underfrequency |                                                                                       | SXF_301.tsq       |
| SXF302      | Abnormal Voltage Transients<br>(Overvoltage/Undervoltage)      | Split phase mode                                                                      | SXF_302_FORM2.tsq |
|             | Abnormal Voltage Transients<br>(Overvoltage/Undervoltage)      | Transformer Coupled                                                                   | SXF_302_XFMR.tsq  |
| SXF303      | Abnormal Frequency Transients<br>(Overfrequency/Underfrequency |                                                                                       | SXF_303.tsq       |
| Emergency   | Operation                                                      |                                                                                       |                   |

| SXF         | Description                                                              | Comments | Test File Name |
|-------------|--------------------------------------------------------------------------|----------|----------------|
| SXF401      | Emergency Limits for voltage and frequency                               |          | SXF_401.tsq    |
| Starting Op | eration                                                                  |          |                |
| SXF501      | Not typically required unless specified by EUT performance specification |          | SXF_501.tsq    |
| Power Failu | ure Operation                                                            |          |                |
| SXF601      | Power Failure (Single phase)                                             |          | SXF_601.tsq    |
| SXF602      | No Test Required                                                         |          | SXF_602.tsq    |
| SXF603      | Phase Reversal                                                           |          | SXF_603.tsq    |

Table 13: Section Coverage Table - Power Group – SXF

| LDC    | Description                                 | Comments                          | Test File Name |
|--------|---------------------------------------------|-----------------------------------|----------------|
| LDC101 | Load Measurements                           |                                   | LDC_101.tsq    |
| LDC102 | Steady State Limits for Voltage (Normal)    |                                   | LDC_102.tsq    |
| LDC103 | Voltage Distortion Spectrum                 | Requires additional equipment     | LDC_103.tsq    |
| LDC104 | Total Ripples                               | This test is not supported by DCR |                |
| LDC105 | Normal Voltage Transients                   |                                   | LDC_105.tsq    |
| LDC201 | Power Interrupt                             |                                   | LDC_201.tsq    |
| LDC301 | Steady State Limits for Voltage (Abnormal)  |                                   | LDC_301.tsq    |
| LDC302 | Abnormal Voltage Transients                 |                                   | LDC_302.tsq    |
| LDC401 | Steady State Limits for Voltage (Emergency) |                                   | LDC_401.tsq    |
| LDC501 | Starting Voltage Transients                 |                                   | LDC_501.tsq    |
| LDC601 | Power Failure                               |                                   | LDC_601.tsq    |
| LDC602 | Polarity Reversal                           |                                   | LDC_602.tsq    |

Table 14: Section Coverage Table – LDC-28VDC

| HDC    | Description                                 | Comments                          | Test File Name   |
|--------|---------------------------------------------|-----------------------------------|------------------|
| HDC101 | Load Measurements                           |                                   | HDC_101.tsq      |
| HDC102 | Steady State Limits for Voltage (Normal)    |                                   | HDC_102.tsq      |
| HDC103 | Voltage Distortion Spectrum                 | Requires additional equipment     | HDC_103.tsq      |
| HDC104 | Total Ripples                               | This test is not supported by DCR |                  |
| HDC105 | Normal Voltage Transients                   |                                   | HDC_105_XFMR.tsq |
| HDC201 | Power Interrupt                             |                                   | HDC_201_XFMR.tsq |
| HDC301 | Steady State Limits for Voltage (Abnormal)  |                                   | HDC_301_XFMR.tsq |
| HDC302 | Abnormal Voltage Transients                 |                                   | HDC_302_XFMR.tsq |
| HDC401 | Steady State Limits for Voltage (Emergency) |                                   | HDC_401_XFMR.tsq |
| HDC501 | Starting Voltage Transients                 |                                   | HDC_501_XFMR.tsq |
| HDC601 | Power Failure                               |                                   | HDC_601_XFMR.tsq |
| HDC602 | Polarity Reversal                           |                                   | HDC_602_XFMR.tsq |

Table 15: Section Coverage Table – HDC-270VDC

# 9.4 Test Level and Duration Tables

For each power group and test number, this section shows a summary table of the voltage and/or frequency test levels and test durations applied to the unit under test. If no test duration is shown, settings are typically applied for 30 minutes per test condition.

For more details on each test, consult the **Objective** window of the related test sequence file in Test Manager.

| Power Group | Description       |
|-------------|-------------------|
| SAC         | See Section 9.4.1 |
| TAC         | See Section 9.4.2 |
| SVF         | See Section 9.4.3 |
| TVF         | See Section 9.4.4 |
| SXF         | See Section 9.4.5 |
| LDC 28VDC   | See Section 9.4.6 |
| HDC 270VDC  | See Section 9.4.7 |

# 9.4.1 SAC Test Details by Test Number (Single Phase, 115V, 400 Hz)

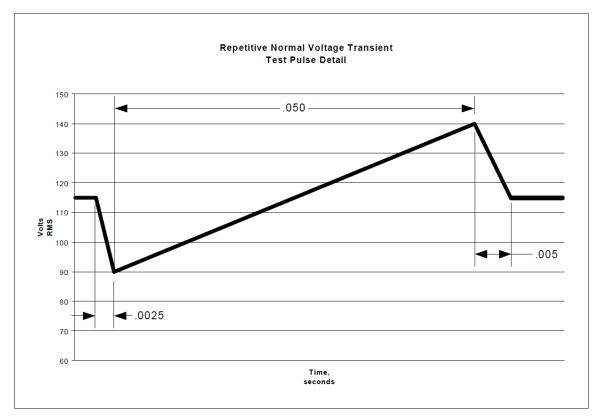
# SAC101

| Test Plan | Description                                                |  |
|-----------|------------------------------------------------------------|--|
| Stimulus: | Apply 115VL-N, 400Hz                                       |  |
|           | Close CB or contactor to EUT and measure Inrush current    |  |
|           | Allow EUT to warm up before taking additional measurements |  |
|           | Allow power to run for 15 mins.                            |  |
| Measure   | Inrush Current, all phases                                 |  |
|           | Steady state voltage, current, power                       |  |
|           | Verify no half wave rectification is used                  |  |
|           | Current Harmonics / All phases using HAS option            |  |
| Repeat    | For each EUT operating mode                                |  |

## SAC102

| Test Condition    | Voltage L-N       | Frequency |  |  |  |
|-------------------|-------------------|-----------|--|--|--|
| Balanced Voltages | Balanced Voltages |           |  |  |  |
| А                 | 115V              | 400Hz     |  |  |  |
| В                 | 115V              | 393Hz     |  |  |  |
| С                 | 115V              | 407Hz     |  |  |  |
| D                 | 108V              | 400Hz     |  |  |  |
| E                 | 108V              | 393Hz     |  |  |  |
| F                 | 108V              | 407Hz     |  |  |  |
| G                 | 118V              | 400Hz     |  |  |  |
| Н                 | 118V              | 393Hz     |  |  |  |
| Ι                 | 118V              | 407Hz     |  |  |  |

| Test Conditions | Average Vrms | Modulation Frequency | Amplitude |
|-----------------|--------------|----------------------|-----------|
| A               | 115V         | 1.0Hz                | 0.375Vrms |
| В               | 115V         | 1.7Hz                | 0.375Vrms |
| С               | 115V         | 10Hz                 | 2.5Vrms   |
| D               | 115V         | 25Hz                 | 2.5Vrms   |
| E               | 115V         | 70Hz                 | 0.375Vrms |
| F               | 115V         | 100Hz                | 0.375Vrms |
| G               | 115V         | 200Hz                | 0.375Vrms |


| Test Condition | Average Frequency | Rate of Freq. Change | Amplitude |
|----------------|-------------------|----------------------|-----------|
| A-1            | 400 Hz            | 1 Hz/sec             | ± 2Hz     |
| A-2            | 395 Hz            |                      |           |
| A-3            | 405 Hz            |                      |           |
| B-1            | 400 Hz            | 5 Hz/sec             |           |
| B-2            | 395 Hz            |                      |           |
| B-3            | 405 Hz            |                      |           |
| C-1            | 400 Hz            | 10 Hz/sec            |           |
| C-2            | 395 Hz            |                      |           |
| C-3            | 405 Hz            |                      |           |
| D-1            | 400 Hz            | 25 Hz/sec            |           |
| D-2            | 395 Hz            |                      |           |
| D-3            | 405 Hz            |                      |           |
| E-1            | 400 Hz            | 100 Hz/sec           |           |
| E-2            | 395 Hz            |                      |           |
| E-3            | 405 Hz            |                      |           |

| Test Condition | Frequency of Voltage Distortion | Amplitude of Voltage Distortion |
|----------------|---------------------------------|---------------------------------|
| Α              | 50 Hz                           | 0.316 Vrms                      |
| В              | 100 Hz                          | 0.316 Vrms                      |
| С              | 500 Hz                          | 1.580 Vrms                      |
| D              | 1 kHz                           | 3.160 Vrms                      |
| E              | 2 kHz                           | 3.160 Vrms                      |
| F              | 3 kHz                           | 3.160 Vrms                      |
| G              | 5 kHz                           | 1.900 Vrms                      |
| Н              | 10 kHz                          | 0.950 Vrms                      |

| Harmonic    | MIL-STD-704 Rev B - F<br>Percent of Fund. |
|-------------|-------------------------------------------|
| Fundamental | 100%                                      |
| 2nd         | 0%                                        |
| 3rd         | 2.75%                                     |
| 4th         | 0%                                        |
| 5th         | 2.75%                                     |
| 6th         | 0%                                        |
| 7th         | 1.97%                                     |
| 8th         | 0%                                        |
| 9th         | 1.53%                                     |
| 10th        | 0%                                        |
| 11th        | 1.25%                                     |
| 12th        | 0%                                        |
| 13th        | 1.06%                                     |
| 14th        | 0%                                        |
| 15th        | 0.92%                                     |

| Test Condition | Direct Current Component of AC Voltage |  |
|----------------|----------------------------------------|--|
| A              | + 0.10V                                |  |
| В              | - 0.10 V                               |  |

| Overvoltage Transie<br>AA | nts<br>< 1.25 msec<br>< 1.25 msec | 140 Vrms  |               |             |
|---------------------------|-----------------------------------|-----------|---------------|-------------|
| AA                        |                                   | 140 Vrms  |               |             |
|                           | < 1.25 msec                       |           | 60 msec       | < 1.25 msec |
| BB                        |                                   | 140 Vrms  | 60 msec       | 25 msec     |
| СС                        | < 1.25 msec                       | 160 Vrms  | 34 msec       | < 1.25 msec |
| DD                        | < 1.25 msec                       | 160 Vrms  | 34 msec       | 52 msec     |
| EE                        | < 1.25 msec                       | 180 Vrms  | 10 msec       | < 1.25 msec |
| FF                        | < 1.25 msec                       | 180 Vrms  | 10 msec       | 77 msec     |
| GG                        | < 1.25 msec                       | 180 Vrms  | 10 msec       | < 1.25 msec |
|                           |                                   | (3 times) | every 0.5 sec |             |
| Undervoltage Transi       | ients                             |           |               |             |
| нн                        | < 1.25 msec                       | 90 Vrms   | 35 msec       | < 1.25 msec |
| II                        | < 1.25 msec                       | 90 Vrms   | 35 msec       | 45 msec     |
| 11                        | < 1.25 msec                       | 80 Vrms   | 10 msec       | < 1.25 msec |
| КК                        | < 1.25 msec                       | 80 Vrms   | 10 msec       | 70 msec     |
| ш                         | < 1.25 msec                       | 80 Vrms   | 10 msec       | < 1.25 msec |
|                           |                                   | (3 times) | every 0.5 sec |             |
| Combined Transient        |                                   |           |               |             |
| ММ                        | < 1.25 msec                       | 80 Vrms   | 10 msec       | < 1.25 msec |
|                           | then < 1.25 msec                  | 180 Vrms  | 10 msec       | 77 msec     |
| Repetitive Normal T       | est                               |           |               |             |
|                           | See Figures                       |           |               |             |





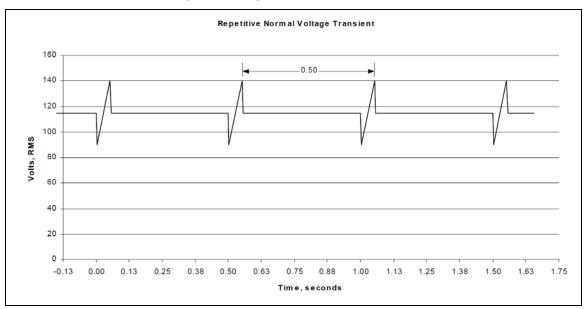



Figure 12: Repetitive Voltage transients.

| Test Condition            | Time from Steady State<br>Freq. to Freq. Transient<br>Level | Freq. Transient Level | Duration at Freq.<br>Transient Level | Time from Freq.<br>Transient Level to<br>Steady State Freq. |
|---------------------------|-------------------------------------------------------------|-----------------------|--------------------------------------|-------------------------------------------------------------|
| <b>Overfrequency Tra</b>  | ansients                                                    |                       |                                      |                                                             |
| AA                        | 40 msec                                                     | 410 Hz                | 10 seconds                           | 40 msec                                                     |
| BB                        | 80 msec                                                     | 420 Hz                | 5 seconds                            | 80 msec                                                     |
| СС                        | 100 msec                                                    | 425 Hz                | 1 seconds                            | 100 msec                                                    |
| DD                        | 100 msec                                                    | 425 Hz                | 1 seconds                            | 10 msec                                                     |
|                           | then 10 msec                                                | 420 Hz                | 4 seconds                            | 20 msec                                                     |
|                           | then 20 msec                                                | 410 Hz                | 5 seconds                            | 40 msec                                                     |
| Underfrequency Transients |                                                             |                       |                                      |                                                             |
| EE                        | 40 msec                                                     | 390 Hz                | 10 seconds                           | 40 msec                                                     |
| FF                        | 80 msec                                                     | 380 Hz                | 5 seconds                            | 80 msec                                                     |
| GG                        | 100 msec                                                    | 375 Hz                | 1 seconds                            | 100 msec                                                    |
| HH                        | 100 msec                                                    | 375 Hz                | 1 seconds                            | 10 msec                                                     |
|                           | then 10 msec                                                | 380 Hz                | 4 seconds                            | 20 msec                                                     |
|                           | then 20 msec                                                | 390 Hz                | 5 seconds                            | 40 msec                                                     |
| Combined Transient        |                                                             |                       |                                      |                                                             |
| II                        | 100 msec                                                    | 375 Hz                | 1 seconds                            | 100 msec                                                    |
|                           | then 100 msec                                               | 425 Hz                | 1 seconds                            | 100 msec                                                    |

| Test Condition | Steady State<br>Voltage | T fall      | Duration of Interrupt                                                                                                                 | T rise      |
|----------------|-------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Α              | 115V                    | < 1.25 msec | 50 msec                                                                                                                               | < 1.25 msec |
| В              | 108V                    | < 1.25 msec | 50 msec                                                                                                                               | < 1.25 msec |
| С              | 118V                    | < 1.25 msec | 50 msec                                                                                                                               | < 1.25 msec |
| D              | 115V                    | < 1.25 msec | 30 msec                                                                                                                               | < 1.25 msec |
| E              | 108V                    | < 1.25 msec | 30 msec                                                                                                                               | < 1.25 msec |
| F              | 118V                    | < 1.25 msec | 30 msec                                                                                                                               | < 1.25 msec |
| G              | 115V                    | < 1.25 msec | 10 msec                                                                                                                               | < 1.25 msec |
| Н              | 108V                    | < 1.25 msec | 10 msec                                                                                                                               | < 1.25 msec |
| I              | 118V                    | < 1.25 msec | 10 msec                                                                                                                               | < 1.25 msec |
| ſ              | 115V                    | < 1.25 msec | 50 msec (repeated 3<br>times, separated by 0.5<br>sec )                                                                               | < 1.25 msec |
| к              | 115V                    | < 1.25 msec | 50 msec (followed by a<br>normal voltage transient<br>of 160 Vrms for 30 msec<br>and return to steady<br>state voltage in 40<br>msec) | 40 msec     |
| L              | 115V                    | < 1.25 msec | 50 msec (followed by a<br>normal voltage transient<br>of 70 Vrms for 30 msec<br>and return to steady<br>state voltage in 40<br>msec)  | 40 msec     |

| Test Condition | Voltage | Frequency |
|----------------|---------|-----------|
| А              | 115     | 380       |
| В              | 115     | 420       |
| С              | 100     | 400       |
| D              | 100     | 380       |
| E              | 100     | 420       |
| F              | 125     | 400       |
| G              | 125     | 380       |
| н              | 125     | 420       |

| Abnormal Limit | 704F   |
|----------------|--------|
| Voltage        | 100 V  |
| ALSS           |        |
| Voltage        | 125 V  |
| AHSS           |        |
| Frequency      | 380 Hz |
| ALSS           |        |
| Frequency      | 420 Hz |
| AHSS           |        |

| Test Condition       | SS Voltage to Voltage | Voltage         | Duration      | Time From Voltage Level to SS |
|----------------------|-----------------------|-----------------|---------------|-------------------------------|
|                      | Transient Level       | Transient Level | Baration      | Voltage or Next Voltage Level |
| Overvoltage Transien |                       |                 | 100           | 4.25                          |
| AA                   | < 1.25 msec           | 140 Vrms        | 180 msec      | < 1.25 msec                   |
| ВВ                   | < 1.25 msec           | 140 Vrms        | 180 msec      | 87 msec                       |
|                      | then                  | 135 Vrms        | decreasing    | 253 msec                      |
|                      | then                  | 130 Vrms        | decreasing    | 6.41 sec                      |
|                      | then                  | 125 Vrms        | decreasing    | >10 sec                       |
|                      |                       | 115 Vrms        |               |                               |
| CC                   | < 1.25 msec           | 160 Vrms        | 78 msec       | < 1.25 msec                   |
| DD                   | < 1.25 msec           | 160 Vrms        | 78 msec       | 31 msec                       |
|                      | then                  | 150 Vrms        | decreasing    | 71 msec                       |
|                      | then                  | 140 Vrms        | decreasing    | 87 msec                       |
|                      | then                  | 135 Vrms        | decreasing    | 253 msec                      |
|                      | then                  | 130 Vrms        | decreasing    | 6.41 sec                      |
|                      | then                  | 125 Vrms        | decreasing    | >10 sec                       |
|                      |                       | 115 Vrms        |               |                               |
| EE                   | < 1.25 msec           | 180 Vrms        | 50 msec       | < 1.25 msec                   |
| FF                   | < 1.25 msec           | 180 Vrms        | 50 msec       | 11 msec                       |
|                      | then                  | 170 Vrms        | decreasing    | 17 msec                       |
|                      | then                  | 160 Vrms        | decreasing    | 31 msec                       |
|                      | then                  | 150 Vrms        | decreasing    | 71 msec                       |
|                      | then                  | 140 Vrms        | decreasing    | 87 msec                       |
|                      | then                  | 135 Vrms        | decreasing    | 253 msec                      |
|                      | then                  | 130 Vrms        | decreasing    | 6.41 sec                      |
|                      | then                  | 125 Vrms        | decreasing    | >10 sec                       |
|                      |                       | 115 Vrms        | uccreasing    | 10.500                        |
| GG                   | < 1.25 msec           | 180 Vrms        | 20 msec       | < 1.25 msec                   |
|                      | 1.25 11300            | (3 times)       | every 0.5 sec |                               |
| Undervoltage Transie | nts                   | (5 times)       | every 0.5 sec |                               |
| HH                   | < 1.25 msec           | 85 Vrms         | 180 msec      | < 1.25 msec                   |
| 11                   | < 1.25 msec           | 85 Vrms         | 180 msec      | 87 msec                       |
|                      | then                  | 90 Vrms         | increasing    | 253 msec                      |
|                      | then                  | 95 Vrms         | increasing    | 6.41 sec                      |
|                      | then                  | 100 Vrms        | increasing    | >10 sec                       |
|                      | tileli                | 115 Vrms        | increasing    | 210 300                       |
| 11                   | < 1.25 msec           | 65 Vrms         | 78 msec       | < 1.25 msec                   |
| КК                   |                       |                 |               |                               |
|                      | < 1.25 msec           | 65 Vrms         | 78 msec       | 31 msec                       |
|                      | then                  | 75 Vrms         | increasing    | 71 msec<br>87 msec            |
|                      | then                  | 85 Vrms         | increasing    |                               |
|                      | then                  | 90 Vrms         | increasing    | 253 msec                      |
|                      | then                  | 95 Vrms         | increasing    | 6.41 sec                      |
|                      | then                  | 100 Vrms        | increasing    | >10 sec                       |
|                      |                       | 115 Vrms        | 50            |                               |
| <u> </u>             | < 1.25 msec           | 45 Vrms         | 50 msec       | < 1.25 msec                   |
| ММ                   | < 1.25 msec           | 45 Vrms         | 50 msec       | 11 msec                       |
|                      | then                  | 55 Vrms         | increasing    | 17 msec                       |
|                      | then                  | 65 Vrms         | increasing    | 31 msec                       |
|                      | then                  | 75 Vrms         | increasing    | 71 msec                       |
|                      | then                  | 85 Vrms         | increasing    | 87 msec                       |
|                      | then                  | 90 Vrms         | increasing    | 253 msec                      |

| Test Condition     | SS Voltage to Voltage<br>Transient Level | Voltage<br>Transient Level | Duration      | Time From Voltage Level to SS<br>Voltage or Next Voltage Level |  |  |
|--------------------|------------------------------------------|----------------------------|---------------|----------------------------------------------------------------|--|--|
|                    | then                                     | 95 Vrms                    | increasing    | 6.41 sec                                                       |  |  |
|                    | then                                     | 100 Vrms                   | increasing    | >10 sec                                                        |  |  |
|                    |                                          | 115 Vrms                   |               |                                                                |  |  |
| NN                 | < 1.25 msec                              | 45 Vrms                    | 20 msec       | < 1.25 msec                                                    |  |  |
|                    |                                          | (3 times)                  | every 0.5 sec |                                                                |  |  |
| Combined Transient |                                          |                            |               |                                                                |  |  |
| 00                 | < 1.25 msec                              | 45 Vrms then               | 20 msec       | < 1.25 msec                                                    |  |  |
|                    | < 1.25 msec                              | 180 Vrms                   | 50 msec       | 11 msec                                                        |  |  |
|                    | then                                     | 170 Vrms                   | decreasing    | 17 msec                                                        |  |  |
|                    | then                                     | 160 Vrms                   | decreasing    | 31 msec                                                        |  |  |
|                    | then                                     | 150 Vrms                   | decreasing    | 71 msec                                                        |  |  |
|                    | then                                     | 140 Vrms                   | decreasing    | 87 msec                                                        |  |  |
|                    | then                                     | 135 Vrms                   | decreasing    | 253 msec                                                       |  |  |
|                    | then                                     | 130 Vrms                   | decreasing    | 6.41 sec                                                       |  |  |
|                    | then                                     | 125 Vrms                   | decreasing    | >10 sec                                                        |  |  |
|                    |                                          | 115 Vrms                   |               |                                                                |  |  |

#### SAC303

| Test Condition            | Transition Time | Transient Level | Duration  | Transition2 |
|---------------------------|-----------------|-----------------|-----------|-------------|
| Overfrequency Transients  |                 |                 |           |             |
| AA                        | 160 msec        | 480 Hz          | ½ cycle   | 160 msec    |
| BB                        | 160 msec        | 480 Hz          | 4.78 secs | 160 msec    |
| Underfrequency Transients |                 |                 |           |             |
| СС                        | 160 msec        | 320 Hz          | ½ cycle   | 160 msec    |
| DD                        | 160 msec        | 320 Hz          | 4.78 secs | 160 msec    |
| Combined Transient        |                 |                 |           |             |
| EE                        | 160 msec        | 320 Hz then     | ½ cycle   | 160 msec    |
|                           | 160 msec        | 480 Hz          | ½ cycle   | 160 msec    |

#### SAC401

| Test Condition | Voltage | Frequency |
|----------------|---------|-----------|
| А              | 115     | 393       |
| В              | 115     | 407       |
| С              | 108     | 400       |
| D              | 108     | 393       |
| E              | 108     | 407       |
| F              | 118     | 400       |
| G              | 118     | 393       |
| Н              | 118     | 407       |

| Abnormal Limit | 704F  |
|----------------|-------|
| Voltage        | 108V  |
| ELSS           |       |
| Voltage        | 118V  |
| EHSS           |       |
| Frequency      | 393Hz |
| ELSS           |       |
| Frequency      | 407Hz |
| EHSS           |       |

#### SAC601

| Test Condition | Duration of Power Failure |  |
|----------------|---------------------------|--|
| А              | 100 msec                  |  |
| В              | 500 msec                  |  |
| С              | 3 secs                    |  |
| D              | 7 secs                    |  |

#### SAC603

| Test Condition            | Phases       | Duration |
|---------------------------|--------------|----------|
| Physical Means Prevention | Verify/Check |          |
| If Not:                   |              |          |
| Reversed Phase Rotation   | N-A          | 30 mins  |
| Correct Phase Rotation    | A-N          | 30 mins  |

## 9.4.2 TAC Test Details by Test Number (Three Phase, 115V, 400 Hz)

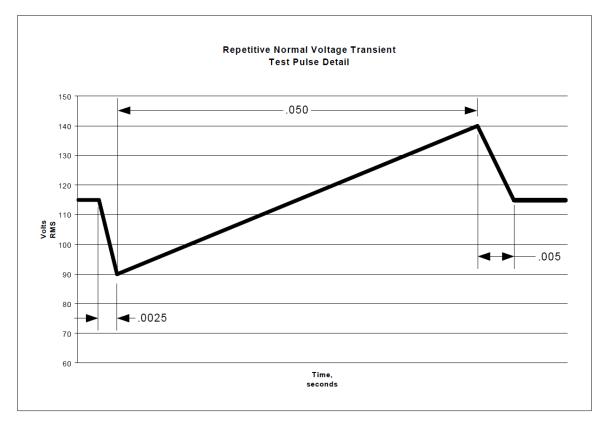
#### TAC101

| Test Plan | Description                                                |
|-----------|------------------------------------------------------------|
| Stimulus: | Apply 115VL-N, 400Hz                                       |
|           | Close CB or contactor to EUT and measure Inrush current    |
|           | Allow EUT to warm up before taking additional measurements |
|           | Allow power to run for 15 mins.                            |
| Measure   | Inrush Current, all phases                                 |
|           | Steady state voltage, current, power                       |
|           | Verify no half wave rectification is used                  |
|           | Current Harmonics / All phases using HAS option            |
| Repeat    | For each EUT operating mode                                |

| Test Condition      | Voltage L-N | Frequency |
|---------------------|-------------|-----------|
| Balanced Voltages   |             |           |
| А                   | 115V        | 400Hz     |
| В                   | 115V        | 393Hz     |
| С                   | 115V        | 407Hz     |
| D                   | 108V        | 400Hz     |
| E                   | 108V        | 393Hz     |
| F                   | 108V        | 407Hz     |
| G                   | 118V        | 400Hz     |
| Н                   | 118V        | 393Hz     |
| I                   | 118V        | 407Hz     |
| Unbalanced Voltages |             |           |
| J                   | Van 108V    | 400Hz     |
|                     | Vbn 111V    |           |
|                     | Vcn 111V    |           |
| к                   | Van 118V    | 400Hz     |
|                     | Vbn 115V    |           |
|                     | Vcn 115V    |           |

| Test Conditions | Phase Van | Phase Vbn | Phase Vcn |
|-----------------|-----------|-----------|-----------|
|                 | Van       | Vbn       | Vcn       |
| А               | 0°        | 116°      | 240°      |
| В               | 0°        | 124°      | 240°      |

| Test Conditions | Average Vrms | Modulation Frequency | Amplitude |
|-----------------|--------------|----------------------|-----------|
| A-1             | 115V         |                      | 0.375Vrms |
| A-2             | 109.25V      | 1.0Hz                |           |
| A-3             | 116.75V      |                      |           |
| B-1             | 115V         |                      |           |
| B-2             | 109.25V      | 1.7Hz                | 0.375Vrms |
| B-3             | 116.75V      |                      |           |
| C-1             | 115V         |                      |           |
| C-2             | 109.25V      | 10Hz                 | 2.5Vrms   |
| C-3             | 116.75V      |                      |           |
| D-1             | 115V         |                      | 2.5Vrms   |
| D-2             | 109.25V      | 25Hz                 |           |
| D-3             | 116.75V      |                      |           |
| E-1             | 115V         | 70Hz                 | 0.375Vrms |
| E-2             | 109.25V      |                      |           |
| E-3             | 116.75V      |                      |           |
| F-1             | 115V         |                      |           |
| F-2             | 109.25V      | 100Hz                | 0.375Vrms |
| F-3             | 116.75V      |                      |           |
| G-1             | 115V         | 200Hz                | 0.375Vrms |
| G-2             | 109.25V      |                      |           |
| G-3             | 116.75V      |                      |           |


| Test Condition | Average Frequency | Rate of Freq. Change | Amplitude |
|----------------|-------------------|----------------------|-----------|
| A-1            | 400 Hz            | 1 Hz/sec             | ± 2Hz     |
| A-2            | 395 Hz            |                      |           |
| A-3            | 405 Hz            |                      |           |
| B-1            | 400 Hz            | 5 Hz/sec             |           |
| B-2            | 395 Hz            |                      |           |
| B-3            | 405 Hz            |                      |           |
| C-1            | 400 Hz            | 10 Hz/sec            |           |
| C-2            | 395 Hz            |                      |           |
| C-3            | 405 Hz            |                      |           |
| D-1            | 400 Hz            | 25 Hz/sec            |           |
| D-2            | 395 Hz            |                      |           |
| D-3            | 405 Hz            |                      |           |
| E-1            | 400 Hz            | 100 Hz/sec           |           |
| E-2            | 395 Hz            |                      |           |
| E-3            | 405 Hz            |                      |           |

| Test Condition | Frequency of Voltage Distortion | Amplitude of Voltage Distortion |
|----------------|---------------------------------|---------------------------------|
| А              | 50 Hz                           | 0.316 Vrms                      |
| В              | 100 Hz                          | 0.316 Vrms                      |
| С              | 500 Hz                          | 1.580 Vrms                      |
| D              | 1 kHz                           | 3.160 Vrms                      |
| E              | 2 kHz                           | 3.160 Vrms                      |
| F              | 3 kHz                           | 3.160 Vrms                      |
| G              | 5 kHz                           | 1.900 Vrms                      |
| Н              | 10 kHz                          | 0.950 Vrms                      |

| Harmonic    | MIL-STD-704 Rev B - F<br>Percent of Fund. |
|-------------|-------------------------------------------|
| Fundamental | 100%                                      |
| 2nd         | 0%                                        |
| 3rd         | 2.75%                                     |
| 4th         | 0%                                        |
| 5th         | 2.75%                                     |
| 6th         | 0%                                        |
| 7th         | 1.97%                                     |
| 8th         | 0%                                        |
| 9th         | 1.53%                                     |
| 10th        | 0%                                        |
| 11th        | 1.25%                                     |
| 12th        | 0%                                        |
| 13th        | 1.06%                                     |
| 14th        | 0%                                        |
| 15th        | 0.92%                                     |

| Test Condition | Direct Current Component of AC Voltage |  |  |  |
|----------------|----------------------------------------|--|--|--|
| Α              | + 0.10V                                |  |  |  |
| В              | - 0.10 V                               |  |  |  |

| Test<br>Condition | Time from Steady State<br>Voltage to Voltage<br>Transient Level (ms) | Voltage Transient<br>Level<br>(Vrms) | Duration at Voltage<br>Transient Level<br>(ms) | Voltage Transient Level<br>to Steady State Voltage<br>(ms) |  |  |  |
|-------------------|----------------------------------------------------------------------|--------------------------------------|------------------------------------------------|------------------------------------------------------------|--|--|--|
| Overvoltage T     | Overvoltage Transients                                               |                                      |                                                |                                                            |  |  |  |
| AA                | < 1.25 msec                                                          | 140 Vrms                             | 60 msec                                        | < 1.25 msec                                                |  |  |  |
| BB                | < 1.25 msec                                                          | 140 Vrms                             | 60 msec                                        | 25 msec                                                    |  |  |  |
| СС                | < 1.25 msec                                                          | 160 Vrms                             | 34 msec                                        | < 1.25 msec                                                |  |  |  |
| DD                | < 1.25 msec                                                          | 160 Vrms                             | 34 msec                                        | 52 msec                                                    |  |  |  |
| EE                | < 1.25 msec                                                          | 180 Vrms                             | 10 msec                                        | < 1.25 msec                                                |  |  |  |
| FF                | < 1.25 msec                                                          | 180 Vrms                             | 10 msec                                        | 77 msec                                                    |  |  |  |
| GG                | < 1.25 msec                                                          | 180 Vrms                             | 10 msec                                        | < 1.25 msec                                                |  |  |  |
|                   |                                                                      | (3 times)                            | every 0.5 sec                                  |                                                            |  |  |  |
| Undervoltage      | Transients                                                           |                                      |                                                |                                                            |  |  |  |
| НН                | < 1.25 msec                                                          | 90 Vrms                              | 35 msec                                        | < 1.25 msec                                                |  |  |  |
| II                | < 1.25 msec                                                          | 90 Vrms                              | 35 msec                                        | 45 msec                                                    |  |  |  |
| 11                | < 1.25 msec                                                          | 80 Vrms                              | 10 msec                                        | < 1.25 msec                                                |  |  |  |
| КК                | < 1.25 msec                                                          | 80 Vrms                              | 10 msec                                        | 70 msec                                                    |  |  |  |
| LL                | < 1.25 msec                                                          | 80 Vrms                              | 10 msec                                        | < 1.25 msec                                                |  |  |  |
|                   |                                                                      | (3 times)                            | every 0.5 sec                                  |                                                            |  |  |  |
| Combined Tra      | nsient                                                               |                                      |                                                |                                                            |  |  |  |
| ММ                | < 1.25 msec                                                          | 80 Vrms                              | 10 msec                                        | < 1.25 msec                                                |  |  |  |
|                   | then < 1.25 msec                                                     | 180 Vrms                             | 10 msec                                        | 77 msec                                                    |  |  |  |
| Repetitive No     | rmal Test                                                            |                                      |                                                |                                                            |  |  |  |
|                   | See Figures                                                          |                                      |                                                |                                                            |  |  |  |





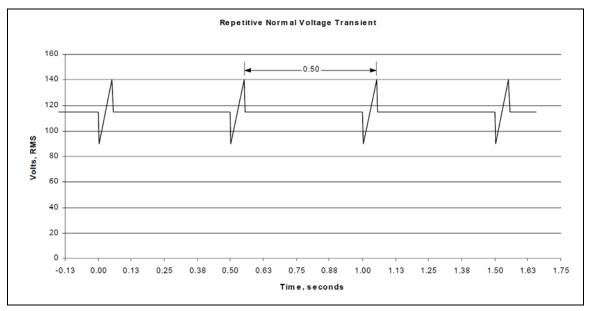



Figure 14: Repetitive Voltage transients.

| Test<br>Condition | Time from Steady<br>State Freq. to Freq.<br>Transient Level | Freq. Transient<br>Level | Duration at Freq.<br>Transient Level | Time from Freq.<br>Transient Level to<br>Steady State Freq. |
|-------------------|-------------------------------------------------------------|--------------------------|--------------------------------------|-------------------------------------------------------------|
| Overfrequenc      | y Transients                                                |                          |                                      |                                                             |
| AA                | 40 msec                                                     | 410 Hz                   | 10 seconds                           | 40 msec                                                     |
| BB                | 80 msec                                                     | 420 Hz                   | 5 seconds                            | 80 msec                                                     |
| CC                | 100 msec                                                    | 425 Hz                   | 1 seconds                            | 100 msec                                                    |
| DD                | 100 msec                                                    | 425 Hz                   | 1 seconds                            | 10 msec                                                     |
|                   | then 10 msec                                                | 420 Hz                   | 4 seconds                            | 20 msec                                                     |
|                   | then 20 msec                                                | 410 Hz                   | 5 seconds                            | 40 msec                                                     |
| Underfrequen      | icy Transients                                              |                          |                                      |                                                             |
| EE                | 40 msec                                                     | 390 Hz                   | 10 seconds                           | 40 msec                                                     |
| FF                | 80 msec                                                     | 380 Hz                   | 5 seconds                            | 80 msec                                                     |
| GG                | 100 msec                                                    | 375 Hz                   | 1 seconds                            | 100 msec                                                    |
| нн                | 100 msec                                                    | 375 Hz                   | 1 seconds                            | 10 msec                                                     |
|                   | then 10 msec                                                | 380 Hz                   | 4 seconds                            | 20 msec                                                     |
|                   | then 20 msec                                                | 390 Hz                   | 5 seconds                            | 40 msec                                                     |
| Combined Tra      | nsient                                                      |                          |                                      |                                                             |
| 11                | 100 msec                                                    | 375 Hz                   | 1 seconds                            | 100 msec                                                    |
|                   | then 100 msec                                               | 425 Hz                   | 1 seconds                            | 100 msec                                                    |

| Test<br>Condition | Steady State Voltage | T fall      | Duration of Interrupt                                                                                                                 | T rise      |
|-------------------|----------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------|
| А                 | 115V                 | < 1.25 msec | 50 msec                                                                                                                               | < 1.25 msec |
| В                 | 108V                 | < 1.25 msec | 50 msec                                                                                                                               | < 1.25 msec |
| С                 | 118V                 | < 1.25 msec | 50 msec                                                                                                                               | < 1.25 msec |
| D                 | 115V                 | < 1.25 msec | 30 msec                                                                                                                               | < 1.25 msec |
| E                 | 108V                 | < 1.25 msec | 30 msec                                                                                                                               | < 1.25 msec |
| F                 | 118V                 | < 1.25 msec | 30 msec                                                                                                                               | < 1.25 msec |
| G                 | 115V                 | < 1.25 msec | 10 msec                                                                                                                               | < 1.25 msec |
| н                 | 108V                 | < 1.25 msec | 10 msec                                                                                                                               | < 1.25 msec |
| I                 | 118V                 | < 1.25 msec | 10 msec                                                                                                                               | < 1.25 msec |
| J                 | 115V                 | < 1.25 msec | 50 msec (repeated 3<br>times, separated by 0.5<br>sec )                                                                               | < 1.25 msec |
| К                 | 115V                 | < 1.25 msec | 50 msec (followed by a<br>normal voltage transient<br>of 160 Vrms for 30 msec<br>and return to steady<br>state voltage in 40<br>msec) | 40 msec     |
| L                 | 115V                 | < 1.25 msec | 50 msec (followed by a<br>normal voltage transient<br>of 70 Vrms for 30 msec<br>and return to steady<br>state voltage in 40<br>msec)  | 40 msec     |

| Test Condition | Voltage | Frequency | Abnormal Limit | 704F   |
|----------------|---------|-----------|----------------|--------|
| Α              | 115     | 380       | Voltage        | 100 V  |
| В              | 115     | 420       | ALSS           |        |
| С              | 100     | 400       | Voltage        | 125 V  |
| D              | 100     | 380       | AHSS           |        |
| E              | 100     | 420       | Frequency      | 380 Hz |
| F              | 125     | 400       | ALSS           |        |
| G              | 125     | 380       | Frequency      | 420 Hz |
| Н              | 125     | 420       | AHSS           |        |

| Test<br>Condition | SS Voltage to Voltage<br>Transient Level | Voltage Transient<br>Level | Duration      | Time From Voltage<br>Level to SS Voltage or<br>Next Voltage Level |
|-------------------|------------------------------------------|----------------------------|---------------|-------------------------------------------------------------------|
| Overvoltage       | e Transients                             |                            |               |                                                                   |
| AA                | < 1.25 msec                              | 140 Vrms                   | 180 msec      | < 1.25 msec                                                       |
| BB                | < 1.25 msec                              | 140 Vrms                   | 180 msec      | 87 msec                                                           |
|                   | then                                     | 135 Vrms                   | decreasing    | 253 msec                                                          |
|                   | then                                     | 130 Vrms                   | decreasing    | 6.41 sec                                                          |
|                   | then                                     | 125 Vrms                   | decreasing    | >10 sec                                                           |
|                   |                                          | 115 Vrms                   |               |                                                                   |
| СС                | < 1.25 msec                              | 160 Vrms                   | 78 msec       | < 1.25 msec                                                       |
| DD                | < 1.25 msec                              | 160 Vrms                   | 78 msec       | 31 msec                                                           |
|                   | then                                     | 150 Vrms                   | decreasing    | 71 msec                                                           |
|                   | then                                     | 140 Vrms                   | decreasing    | 87 msec                                                           |
|                   | then                                     | 135 Vrms                   | decreasing    | 253 msec                                                          |
|                   | then                                     | 130 Vrms                   | decreasing    | 6.41 sec                                                          |
|                   | then                                     | 125 Vrms                   | decreasing    | >10 sec                                                           |
|                   |                                          | 115 Vrms                   |               |                                                                   |
| EE                | < 1.25 msec                              | 180 Vrms                   | 50 msec       | < 1.25 msec                                                       |
| FF                | < 1.25 msec                              | 180 Vrms                   | 50 msec       | 11 msec                                                           |
|                   | then                                     | 170 Vrms                   | decreasing    | 17 msec                                                           |
|                   | then                                     | 160 Vrms                   | decreasing    | 31 msec                                                           |
|                   | then                                     | 150 Vrms                   | decreasing    | 71 msec                                                           |
|                   | then                                     | 140 Vrms                   | decreasing    | 87 msec                                                           |
|                   | then                                     | 135 Vrms                   | decreasing    | 253 msec                                                          |
|                   | then                                     | 130 Vrms                   | decreasing    | 6.41 sec                                                          |
|                   | then                                     | 125 Vrms                   | decreasing    | >10 sec                                                           |
|                   |                                          | 115 Vrms                   |               |                                                                   |
| GG                | < 1.25 msec                              | 180 Vrms                   | 20 msec       | < 1.25 msec                                                       |
|                   |                                          | (3 times)                  | every 0.5 sec |                                                                   |
| Undervoltag       | ge Transients                            |                            |               |                                                                   |
| HH                | < 1.25 msec                              | 85 Vrms                    | 180 msec      | < 1.25 msec                                                       |
| II                | < 1.25 msec                              | 85 Vrms                    | 180 msec      | 87 msec                                                           |
|                   | then                                     | 90 Vrms                    | increasing    | 253 msec                                                          |
|                   | then                                     | 95 Vrms                    | increasing    | 6.41 sec                                                          |
|                   | then                                     | 100 Vrms                   | increasing    | >10 sec                                                           |
|                   |                                          | 115 Vrms                   |               |                                                                   |

| Test<br>Condition | SS Voltage to Voltage<br>Transient Level | Voltage Transient<br>Level | Duration      | Time From Voltage<br>Level to SS Voltage or<br>Next Voltage Level |
|-------------------|------------------------------------------|----------------------------|---------------|-------------------------------------------------------------------|
| 11                | < 1.25 msec                              | 65 Vrms                    | 78 msec       | < 1.25 msec                                                       |
| KK                | < 1.25 msec                              | 65 Vrms                    | 78 msec       | 31 msec                                                           |
|                   | then                                     | 75 Vrms                    | increasing    | 71 msec                                                           |
|                   | then                                     | 85 Vrms                    | increasing    | 87 msec                                                           |
|                   | then                                     | 90 Vrms                    | increasing    | 253 msec                                                          |
|                   | then                                     | 95 Vrms                    | increasing    | 6.41 sec                                                          |
|                   | then                                     | 100 Vrms                   | increasing    | >10 sec                                                           |
|                   |                                          | 115 Vrms                   |               |                                                                   |
| LL                | < 1.25 msec                              | 45 Vrms                    | 50 msec       | < 1.25 msec                                                       |
| MM                | < 1.25 msec                              | 45 Vrms                    | 50 msec       | 11 msec                                                           |
|                   | then                                     | 55 Vrms                    | increasing    | 17 msec                                                           |
|                   | then                                     | 65 Vrms                    | increasing    | 31 msec                                                           |
|                   | then                                     | 75 Vrms                    | increasing    | 71 msec                                                           |
|                   | then                                     | 85 Vrms                    | increasing    | 87 msec                                                           |
|                   | then                                     | 90 Vrms                    | increasing    | 253 msec                                                          |
|                   | then                                     | 95 Vrms                    | increasing    | 6.41 sec                                                          |
|                   | then                                     | 100 Vrms                   | increasing    | >10 sec                                                           |
|                   |                                          | 115 Vrms                   |               |                                                                   |
| NN                | < 1.25 msec                              | 45 Vrms                    | 20 msec       | < 1.25 msec                                                       |
|                   |                                          | (3 times)                  | every 0.5 sec |                                                                   |
| Combined T        | ransient                                 |                            |               |                                                                   |
| 00                | < 1.25 msec                              | 45 Vrms then               | 20 msec       | < 1.25 msec                                                       |
|                   | < 1.25 msec                              | 180 Vrms                   | 50 msec       | 11 msec                                                           |
|                   | then                                     | 170 Vrms                   | decreasing    | 17 msec                                                           |
|                   | then                                     | 160 Vrms                   | decreasing    | 31 msec                                                           |
|                   | then                                     | 150 Vrms                   | decreasing    | 71 msec                                                           |
|                   | then                                     | 140 Vrms                   | decreasing    | 87 msec                                                           |
|                   | then                                     | 135 Vrms                   | decreasing    | 253 msec                                                          |
|                   | then                                     | 130 Vrms                   | decreasing    | 6.41 sec                                                          |
|                   | then                                     | 125 Vrms                   | decreasing    | >10 sec                                                           |
|                   |                                          | 115 Vrms                   |               |                                                                   |

| Test Condition              | Transition Time     | Transient Level | Duration  | Transition2 |  |
|-----------------------------|---------------------|-----------------|-----------|-------------|--|
| Overfrequency Tr            | ansients            |                 |           |             |  |
| AA                          | 160 msec            | 480 Hz          | ½ cycle   | 160 msec    |  |
| BB                          | 160 msec            | 480 Hz          | 4.78 secs | 160 msec    |  |
| Underfrequency <sup>-</sup> | Transients          |                 |           |             |  |
| CC                          | 160 msec            | 320 Hz          | ½ cycle   | 160 msec    |  |
| DD                          | 160 msec            | 320 Hz          | 4.78 secs | 160 msec    |  |
| Combined Transie            | Combined Transients |                 |           |             |  |
| EE                          | 160 msec            | 320 Hz then     | ½ cycle   | 160 msec    |  |
|                             | 160 msec            | 480 Hz          | ½ cycle   | 160 msec    |  |

#### TAC401

| Test Condition | Voltage | Frequency |
|----------------|---------|-----------|
| А              | 115     | 393       |
| В              | 115     | 407       |
| С              | 108     | 400       |
| D              | 108     | 393       |
| E              | 108     | 407       |
| F              | 118     | 400       |
| G              | 118     | 393       |
| н              | 118     | 407       |

| Abnormal Limit | 704F  |
|----------------|-------|
| Voltage        | 108V  |
| ELSS           |       |
| Voltage        | 118V  |
| EHSS           |       |
| Frequency      | 393Hz |
| ELSS           |       |
| Frequency      | 407Hz |
| EHSS           |       |

#### TAC601

| Test Condition | Duration of Power Failure |
|----------------|---------------------------|
| A              | 100 msec                  |
| В              | 500 msec                  |
| С              | 3 secs                    |
| D              | 7 secs                    |

| Test Condition           | Test Condition Phases   |              | Rep |  |  |  |  |
|--------------------------|-------------------------|--------------|-----|--|--|--|--|
| One Phase Power Failure  | One Phase Power Failure |              |     |  |  |  |  |
| A                        | Phase A                 | 7 seconds    | 5   |  |  |  |  |
| В                        | Phase B                 | 7 seconds    | 5   |  |  |  |  |
| С                        | Phase C                 | 7 seconds    | 5   |  |  |  |  |
| D                        | Phase A                 | Indefinitely | 1   |  |  |  |  |
| E                        | Phase B                 | Indefinitely | 1   |  |  |  |  |
| F                        | Phase C                 | Indefinitely | 1   |  |  |  |  |
| Two Phase Power Failures |                         |              |     |  |  |  |  |
| G                        | Phase A & B             | 7 seconds    | 5   |  |  |  |  |
| н                        | Phase B & C             | 7 seconds    | 5   |  |  |  |  |
| I                        | Phase A & B             | Indefinitely | 1   |  |  |  |  |
| J                        | Phase B & C             | Indefinitely | 1   |  |  |  |  |

| Test Condition            | Phases       | Duration |
|---------------------------|--------------|----------|
| Physical Means Prevention | Verify/Check |          |
| If Not:                   |              |          |
| Reversed Phase Rotation   | C-B-A        | 30 mins  |
| Correct Phase Rotation    | A-B-C        | 30 mins  |

## 9.4.3 SVF Test Details by Test Number (Single Phase, 115V, Variable Frequency)

## SVF101

| Test Plan | Description                                                   | Run at F =             |
|-----------|---------------------------------------------------------------|------------------------|
| Stimulus: | Apply 115VL-N, 360-800 Hz                                     |                        |
|           | Close CB or contactor to EUT and measure Inrush current       |                        |
|           | Allow EUT to warm up before taking additional<br>measurements |                        |
|           | Allow power to run for 15 mins.                               |                        |
| Measure   | Inrush Current, all phases                                    | 400, 360, 600, 800 Hz  |
|           | Steady state voltage, current, power, Load Balance            | 400, 360, 600, 800 Hz  |
|           | Verify no half wave rectification is used                     | 400Hz only             |
|           | Current Harmonics / All phases using HAS option               | 400Hz only             |
| Run at:   | 400Hz, 360Hz, 600Hz, 800Hz Note: Frequency jumps between t    | ests done over 40 secs |
| Repeat    | For each EUT operating mode                                   |                        |

#### SVF102

| Test Condition     | Voltage          | Frequency | Time at Test Condition |  |  |  |  |
|--------------------|------------------|-----------|------------------------|--|--|--|--|
| Nominal Voltages   | Nominal Voltages |           |                        |  |  |  |  |
| Α                  | 115 V            | 360 Hz    | 30 min                 |  |  |  |  |
| В                  | 115 V            | 400 Hz    | 30 min                 |  |  |  |  |
| С                  | 115 V            | 600 Hz    | 30 min                 |  |  |  |  |
| D                  | 115 V            | 800 Hz    | 30 min                 |  |  |  |  |
| Normal Low Steady  | State Voltages   |           |                        |  |  |  |  |
| E                  | 108 V            | 360 Hz    | 30 min                 |  |  |  |  |
| F                  | 108 V            | 400 Hz    | 30 min                 |  |  |  |  |
| G                  | 108 V            | 440 Hz    | 5 min                  |  |  |  |  |
| н                  | 108 V            | 480 Hz    | 5 min                  |  |  |  |  |
| I                  | 108 V            | 520 Hz    | 5 min                  |  |  |  |  |
| J                  | 108 V            | 560 Hz    | 5 min                  |  |  |  |  |
| К                  | 108 V            | 600 Hz    | 30 min                 |  |  |  |  |
| L                  | 108 V            | 520 Hz    | 5 min                  |  |  |  |  |
| М                  | 108 V            | 540 Hz    | 5 min                  |  |  |  |  |
| N                  | 108 V            | 560 Hz    | 5 min                  |  |  |  |  |
| 0                  | 108 V            | 570 Hz    | 5 min                  |  |  |  |  |
| Р                  | 108 V            | 580 Hz    | 5 min                  |  |  |  |  |
| Q                  | 108 V            | 600 Hz    | 30 min                 |  |  |  |  |
| R                  | 108 V            | 640 Hz    | 5 min                  |  |  |  |  |
| S                  | 108 V            | 680 Hz    | 5 min                  |  |  |  |  |
| т                  | 108 V            | 720 Hz    | 5 min                  |  |  |  |  |
| U                  | 108 V            | 760 Hz    | 5 min                  |  |  |  |  |
| V                  | 108 V            | 800 Hz    | 30 min                 |  |  |  |  |
| Normal High Steady | State Voltages   |           |                        |  |  |  |  |
| W                  | 118 V            | 360 Hz    | 30 min                 |  |  |  |  |
| Х                  | 118 V            | 400 Hz    | 30 min                 |  |  |  |  |
| Y                  | 118 V            | 440 Hz    | 5 min                  |  |  |  |  |
| Z                  | 118 V            | 480 Hz    | 5 min                  |  |  |  |  |
| AA                 | 118 V            | 520 Hz    | 5 min                  |  |  |  |  |

| Test Condition | Voltage | Frequency | Time at Test Condition |
|----------------|---------|-----------|------------------------|
| BB             | 118 V   | 560 Hz    | 5 min                  |
| CC             | 118 V   | 600 Hz    | 30 min                 |
| DD             | 118 V   | 520 Hz    | 5 min                  |
| EE             | 118 V   | 540 Hz    | 5 min                  |
| FF             | 118 V   | 560 Hz    | 5 min                  |
| GG             | 118 V   | 570 Hz    | 5 min                  |
| НН             | 118 V   | 580 Hz    | 5 min                  |
| II             | 118 V   | 600 Hz    | 30 min                 |
| 11             | 118 V   | 640 Hz    | 5 min                  |
| КК             | 118 V   | 680 Hz    | 5 min                  |
| LL             | 118 V   | 720 Hz    | 5 min                  |
| ММ             | 118 V   | 760 Hz    | 5 min                  |
| NN             | 118 V   | 800 Hz    | 30 min                 |

SVF104: All Test Conditions Executed at 400Hz, 360Hz, 600Hz and 800Hz.

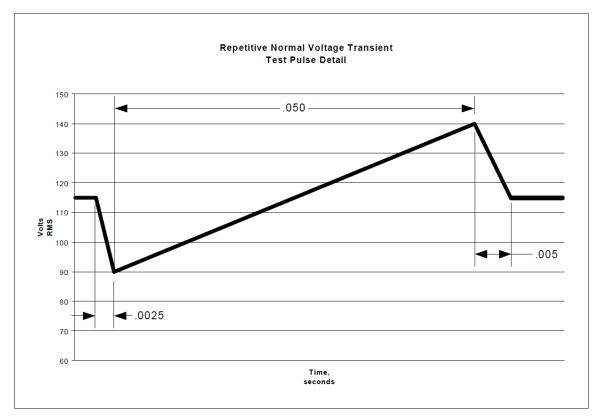
| Test Conditions | Average Vrms | Modulation Frequency | Amplitude |  |
|-----------------|--------------|----------------------|-----------|--|
| A-1             | 115V         |                      |           |  |
| A-2             | 109.25V      | 1.0Hz                | 0.375Vrms |  |
| A-3             | 116.75V      |                      |           |  |
| B-1             | 115V         |                      |           |  |
| B-2             | 109.25V      | 1.7Hz                | 0.375Vrms |  |
| B-3             | 116.75V      |                      |           |  |
| C-1             | 115V         |                      |           |  |
| C-2             | 109.25V      | 10Hz                 | 2.5Vrms   |  |
| C-3             | 116.75V      |                      |           |  |
| D-1             | 115V         |                      | 2.5Vrms   |  |
| D-2             | 109.25V      | 25Hz                 |           |  |
| D-3             | 116.75V      |                      |           |  |
| E-1             | 115V         |                      | 0.375Vrms |  |
| E-2             | 109.25V      | 70Hz                 |           |  |
| E-3             | 116.75V      |                      |           |  |
| F-1             | 115V         |                      |           |  |
| F-2             | 109.25V      | 100Hz                | 0.375Vrms |  |
| F-3             | 116.75V      |                      |           |  |
| G-1             | 115V         |                      |           |  |
| G-2             | 109.25V      | 200Hz                | 0.375Vrms |  |
| G-3             | 116.75V      |                      |           |  |

| Test Condition | Average Frequency | Rate of Freq. Change | Amplitude |
|----------------|-------------------|----------------------|-----------|
| Α              | 400 Hz            | 1 Hz/sec             | ± 2Hz     |
| В              | 400 Hz            | 5 Hz/sec             |           |
| С              | 400 Hz            | 10 Hz/sec            |           |
| D              | 400 Hz            | 25 Hz/sec            |           |
| E              | 400 Hz            | 100 Hz/sec           |           |
| Α              | 362 Hz            | 1 Hz/sec             | ± 2Hz     |
| В              | 362 Hz            | 5 Hz/sec             |           |
| С              | 362 Hz            | 10 Hz/sec            |           |
| D              | 362 Hz            | 25 Hz/sec            |           |
| E              | 362 Hz            | 100 Hz/sec           |           |
| Α              | 600 Hz            | 1 Hz/sec             | ± 2Hz     |
| В              | 600 Hz            | 5 Hz/sec             |           |
| С              | 600 Hz            | 10 Hz/sec            |           |
| D              | 600 Hz            | 25 Hz/sec            |           |
| E              | 600 Hz            | 100 Hz/sec           |           |
| Α              | 798 Hz            | 1 Hz/sec             | ± 2Hz     |
| В              | 798 Hz            | 5 Hz/sec             |           |
| С              | 798 Hz            | 10 Hz/sec            |           |
| D              | 798 Hz            | 25 Hz/sec            |           |
| E              | 798 Hz            | 100 Hz/sec           |           |

SVF106: All Test Conditions Executed at 400Hz, 360Hz, 600Hz and 800Hz.

| Test Condition | Frequency of Voltage<br>Distortion | Amplitude of Voltage Distortion |
|----------------|------------------------------------|---------------------------------|
| Α              | 50 Hz                              | 0.316 Vrms                      |
| В              | 100 Hz                             | 0.316 Vrms                      |
| С              | 500 Hz                             | 1.580 Vrms                      |
| D              | 1 kHz                              | 3.160 Vrms                      |
| E              | 2 kHz                              | 3.160 Vrms                      |
| F              | 3 kHz                              | 3.160 Vrms                      |
| G              | 5 kHz                              | 1.900 Vrms                      |
| Н              | 10 kHz                             | 0.950 Vrms                      |

| Harmonic    | MIL-STD-704 Rev B - F<br>Percent of Fund. |
|-------------|-------------------------------------------|
| Fundamental | 100%                                      |
| 2nd         | 0%                                        |
| 3rd         | 2.75%                                     |
| 4th         | 0%                                        |
| 5th         | 2.75%                                     |
| 6th         | 0%                                        |
| 7th         | 1.97%                                     |
| 8th         | 0%                                        |
| 9th         | 1.53%                                     |
| 10th        | 0%                                        |
| 11th        | 1.25%                                     |
| 12th        | 0%                                        |
| 13th        | 1.06%                                     |
| 14th        | 0%                                        |
| 15th        | 0.92%                                     |


#### SVF107: All Test Conditions Executed at 400Hz, 360Hz, 600Hz and 800Hz.

SVF108: All Test Conditions Executed at 400Hz, 360Hz, 600Hz and 800Hz.

| Test Condition | Direct Current Component of AC Voltage |
|----------------|----------------------------------------|
| А              | + 0.10V                                |
| В              | - 0.10 V                               |

| Test Condition          | Time from Steady<br>State Voltage to<br>Voltage Transient<br>Level (ms) | Voltage Transient<br>Level<br>(Vrms) | Duration at<br>Voltage<br>Transient Level<br>(ms) | Voltage Transient<br>Level to Steady<br>State Voltage (ms) |
|-------------------------|-------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------|------------------------------------------------------------|
| Overvoltage Transients  |                                                                         |                                      |                                                   |                                                            |
| Α                       | < ½ cycle                                                               | 140 Vrms                             | 60 msec                                           | < ½ cycle                                                  |
| В                       | < ½ cycle                                                               | 140 Vrms                             | 60 msec                                           | 25 msec                                                    |
| С                       | < ½ cycle                                                               | 160 Vrms                             | 34 msec                                           | < ½ cycle                                                  |
| D                       | < ½ cycle                                                               | 160 Vrms                             | 34 msec                                           | 52 msec                                                    |
| E                       | < ½ cycle                                                               | 180 Vrms                             | 10 msec                                           | < ½ cycle                                                  |
| F                       | < ½ cycle                                                               | 180 Vrms                             | 10 msec                                           | 77 msec                                                    |
| G                       | < ½ cycle                                                               | 180 Vrms                             | 10 msec                                           | < ½ cycle                                                  |
|                         |                                                                         | (3 times)                            | every 0.5 sec                                     |                                                            |
| Undervoltage Transients |                                                                         |                                      |                                                   |                                                            |
| н                       | < ½ cycle                                                               | 90 Vrms                              | 35 msec                                           | < ½ cycle                                                  |
| I                       | < ½ cycle                                                               | 90 Vrms                              | 35 msec                                           | 45 msec                                                    |
| J                       | < ½ cycle                                                               | 80 Vrms                              | 10 msec                                           | < ½ cycle                                                  |
| К                       | < ½ cycle                                                               | 80 Vrms                              | 10 msec                                           | 70 msec                                                    |
| L                       | < ½ cycle                                                               | 80 Vrms                              | 10 msec                                           | < ½ cycle                                                  |
|                         |                                                                         | (3 times)                            | every 0.5 sec                                     |                                                            |
| Combined Transient      |                                                                         |                                      |                                                   |                                                            |
| М                       | < ½ cycle                                                               | 80 Vrms                              | 10 msec                                           | < ½ cycle                                                  |
|                         | then < ½ cycle                                                          | 180 Vrms                             | 10 msec                                           | 77 msec                                                    |
| Repetitive Normal Test  |                                                                         |                                      |                                                   |                                                            |
|                         | See Figures                                                             |                                      |                                                   |                                                            |

#### SVF109: All Test Conditions Executed at 400Hz, 360Hz, 600Hz and 800Hz.





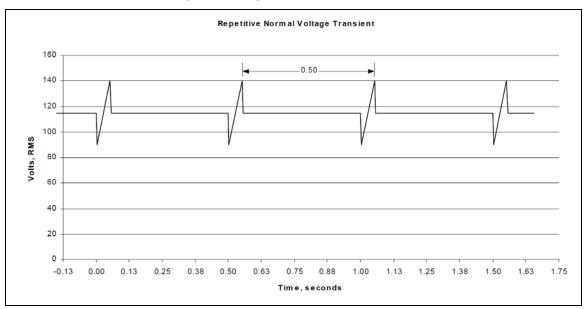



Figure 16: Repetitive Voltage transients.

| Test Condition     | Start Frequency | Time from Steady<br>State Freq. to<br>Freq. Transient<br>Level | Freq.<br>Transient<br>Level | Duration at<br>Freq.<br>Transient<br>Level | Time from Freq.<br>Transient Level to<br>Steady State Freq. |
|--------------------|-----------------|----------------------------------------------------------------|-----------------------------|--------------------------------------------|-------------------------------------------------------------|
| Overfrequency T    | ransients       |                                                                |                             |                                            |                                                             |
| Α                  | 360 Hz          | 1.76 seconds                                                   | 800 Hz                      | 1/2 cycle                                  | 1.76 seconds                                                |
| В                  | 360 Hz          | 1.76 seconds                                                   | 800 Hz                      | 1 seconds                                  | 1.76 seconds                                                |
| С                  | 360 Hz          | 0.96 seconds                                                   | 600 Hz                      | 1/2 cycle                                  | 0.96 seconds                                                |
| D                  | 360 Hz          | 0.96 seconds                                                   | 600 Hz                      | 1 seconds                                  | 0.96 seconds                                                |
| Underfrequency     | Transients      |                                                                |                             |                                            |                                                             |
| E                  | 800 Hz          | 1.76 seconds                                                   | 360 Hz                      | 1/2 cycle                                  | 1.76 seconds                                                |
| F                  | 800 Hz          | 1.76 seconds                                                   | 360 Hz                      | 1 seconds                                  | 1.76 seconds                                                |
| G                  | 800 Hz          | 0.80 seconds                                                   | 600 Hz                      | 1/2 cycle                                  | 0.80 seconds                                                |
| Н                  | 800 Hz          | 0.80 seconds                                                   | 600 Hz                      | 1 seconds                                  | 0.80 seconds                                                |
| Combined Transient |                 |                                                                |                             |                                            |                                                             |
| I                  | 600 Hz          | 0.96 seconds                                                   | 360 Hz                      | 1/2 cycle                                  | 0.96 seconds                                                |
|                    |                 | then 0.80 seconds                                              | 800 Hz                      | 1/2 cycle                                  | then 0.80 seconds                                           |

SVF201: All Test Conditions Executed at 400Hz, 360Hz, 600Hz and 800Hz.

| Test Condition | Steady State<br>Voltage | T fall    | Duration of Interrupt                                                                                                           | T rise    |
|----------------|-------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------|-----------|
| Α              | 115V                    | < ½ cycle | 50 msec                                                                                                                         | < ½ cycle |
| В              | 108V                    | < ½ cycle | 50 msec                                                                                                                         | < ½ cycle |
| С              | 118V                    | < ½ cycle | 50 msec                                                                                                                         | < ½ cycle |
| D              | 115V                    | < ½ cycle | 30 msec                                                                                                                         | < ½ cycle |
| E              | 108V                    | < ½ cycle | 30 msec                                                                                                                         | < ½ cycle |
| F              | 118V                    | < ½ cycle | 30 msec                                                                                                                         | < ½ cycle |
| G              | 115V                    | < ½ cycle | 10 msec                                                                                                                         | < ½ cycle |
| н              | 108V                    | < ½ cycle | 10 msec                                                                                                                         | < ½ cycle |
| I              | 118V                    | < ½ cycle | 10 msec                                                                                                                         | < ½ cycle |
| L              | 115V                    | < ½ cycle | 50 msec (repeated 3 times, separated by 0.5 sec )                                                                               | < ½ cycle |
| к              | 115V                    | < ½ cycle | 50 msec (followed by a normal<br>voltage transient of 160 Vrms for 30<br>msec and return to steady state<br>voltage in 40 msec) | 40 msec   |
| L              | 115V                    | < ½ cycle | 50 msec (followed by a normal<br>voltage transient of 70 Vrms for 30<br>msec and return to steady state<br>voltage in 40 msec)  | 40 msec   |

**Note:** For FORM2 (Split Phase) test files, Test conditions A through J and L are executed on the Low Voltage range in Single Phase mode (FORM1). Test condition K is executed last after changing to split phase mode (FORM2). This requires the UUT Connection to be changed from A-N to A-B.

| Test Conditions | Voltage L-N | Frequency |
|-----------------|-------------|-----------|
| Α               | 100V        | 400Hz     |
| В               | 100V        | 360Hz     |
| С               | 100V        | 600Hz     |
| D               | 100V        | 800Hz     |
| E               | 125V        | 400Hz     |
| F               | 125V        | 360Hz     |
| G               | 125V        | 600Hz     |
| н               | 125V        | 800Hz     |

| Abnormal Limit | 704F  |
|----------------|-------|
| Voltage        | 100 V |
| ALSS           |       |
| Voltage        | 125 V |
| AHSS           |       |
| Frequency      | 360Hz |
| ALSS           |       |
| Frequency      | 800Hz |
| AHSS           |       |

#### SVF302: All Test Conditions Executed at 400Hz, 360Hz, 600Hz and 800Hz.

| Test Condition      | SS Voltage to Voltage<br>Transient Level | Voltage<br>Transient Level | Duration      | Time From Voltage Level to<br>SS Voltage or Next Voltage<br>Level |
|---------------------|------------------------------------------|----------------------------|---------------|-------------------------------------------------------------------|
| Overvoltage Transie | ents                                     | •                          | •             |                                                                   |
| Α                   | < ½ cycle                                | 140 Vrms                   | 180 msec      | < ½ cycle                                                         |
| В                   | < ½ cycle                                | 140 Vrms                   | 180 msec      | 87 msec                                                           |
|                     | then                                     | 135 Vrms                   | decreasing    | 253 msec                                                          |
|                     | then                                     | 130 Vrms                   | decreasing    | 6.41 sec                                                          |
|                     | then                                     | 125 Vrms                   | decreasing    | 30 sec                                                            |
|                     |                                          | 115 Vrms                   |               |                                                                   |
| С                   | < ½ cycle                                | 160 Vrms                   | 78 msec       | < ½ cycle                                                         |
| D                   | < ½ cycle                                | 160 Vrms                   | 78 msec       | 31 msec                                                           |
|                     | then                                     | 150 Vrms                   | decreasing    | 71 msec                                                           |
|                     | then                                     | 140 Vrms                   | decreasing    | 87 msec                                                           |
|                     | then                                     | 135 Vrms                   | decreasing    | 253 msec                                                          |
|                     | then                                     | 130 Vrms                   | decreasing    | 6.41 sec                                                          |
|                     | then                                     | 125 Vrms                   | decreasing    | 30 sec                                                            |
|                     |                                          | 115 Vrms                   | Ŭ             |                                                                   |
| E                   | < ½ cycle                                | 180 Vrms                   | 50 msec       | < ½ cycle                                                         |
| F                   | < ½ cycle                                | 180 Vrms                   | 50 msec       | 11 msec                                                           |
|                     | then                                     | 170 Vrms                   | decreasing    | 17 msec                                                           |
|                     | then                                     | 160 Vrms                   | decreasing    | 31 msec                                                           |
|                     | then                                     | 150 Vrms                   | decreasing    | 71 msec                                                           |
|                     | then                                     | 140 Vrms                   | decreasing    | 87 msec                                                           |
|                     | then                                     | 135 Vrms                   | decreasing    | 253 msec                                                          |
|                     | then                                     | 130 Vrms                   | decreasing    | 6.41 sec                                                          |
|                     | then                                     | 125 Vrms                   | decreasing    | 30 sec                                                            |
|                     |                                          | 115 Vrms                   |               |                                                                   |
| G                   | < ½ cycle                                | 180 Vrms                   | 20 msec       | < ½ cycle                                                         |
|                     |                                          | (3 times)                  | every 0.5 sec |                                                                   |
| Undervoltage Trans  | ients                                    |                            |               |                                                                   |
| H                   | < ½ cycle                                | 85 Vrms                    | 180 msec      | < ½ cycle                                                         |
| I                   | < ½ cycle                                | 85 Vrms                    | 180 msec      | 87 msec                                                           |
|                     | then                                     | 90 Vrms                    | increasing    | 253 msec                                                          |
|                     | then                                     | 95 Vrms                    | increasing    | 6.41 sec                                                          |
|                     | then                                     | 100 Vrms                   | increasing    | 30 sec                                                            |
|                     |                                          | 115 Vrms                   | ÿ             |                                                                   |
| J                   | < ½ cycle                                | 65 Vrms                    | 78 msec       | < ½ cycle                                                         |
| К                   | < ½ cycle                                | 65 Vrms                    | 78 msec       | 31 msec                                                           |

| Test Condition            | SS Voltage to Voltage<br>Transient Level | Voltage<br>Transient Level | Duration      | Time From Voltage Level to<br>SS Voltage or Next Voltage<br>Level |
|---------------------------|------------------------------------------|----------------------------|---------------|-------------------------------------------------------------------|
|                           | then                                     | 75 Vrms                    | increasing    | 71 msec                                                           |
|                           | then                                     | 85 Vrms                    | increasing    | 87 msec                                                           |
|                           | then                                     | 90 Vrms                    | increasing    | 253 msec                                                          |
|                           | then                                     | 95 Vrms                    | increasing    | 6.41 sec                                                          |
|                           | then                                     | 100 Vrms                   | increasing    | 30 sec                                                            |
|                           |                                          | 115 Vrms                   |               |                                                                   |
| L                         | < ½ cycle                                | 45 Vrms                    | 50 msec       | < ½ cycle                                                         |
| М                         | < ½ cycle                                | 45 Vrms                    | 50 msec       | 11 msec                                                           |
|                           | then                                     | 55 Vrms                    | increasing    | 17 msec                                                           |
|                           | then                                     | 65 Vrms                    | increasing    | 31 msec                                                           |
|                           | then                                     | 75 Vrms                    | increasing    | 71 msec                                                           |
|                           | then                                     | 85 Vrms                    | increasing    | 87 msec                                                           |
|                           | then                                     | 90 Vrms                    | increasing    | 253 msec                                                          |
|                           | then                                     | 95 Vrms                    | increasing    | 6.41 sec                                                          |
|                           | then                                     | 100 Vrms                   | increasing    | 30 sec                                                            |
|                           |                                          | 115 Vrms                   |               |                                                                   |
| N                         | < ½ cycle                                | 45 Vrms                    | 20 msec       | < ½ cycle                                                         |
|                           |                                          | (3 times)                  | every 0.5 sec |                                                                   |
| <b>Combined Transient</b> |                                          |                            |               |                                                                   |
| 0                         | < ½ cycle                                | 45 Vrms then               | 20 msec       | < ½ cycle                                                         |
|                           | < ½ cycle                                | 180 Vrms                   | 50 msec       | 11 msec                                                           |
|                           | then                                     | 170 Vrms                   | decreasing    | 17 msec                                                           |
|                           | then                                     | 160 Vrms                   | decreasing    | 31 msec                                                           |
|                           | then                                     | 150 Vrms                   | decreasing    | 71 msec                                                           |
|                           | then                                     | 140 Vrms                   | decreasing    | 87 msec                                                           |
|                           | then                                     | 135 Vrms                   | decreasing    | 253 msec                                                          |
|                           | then                                     | 130 Vrms                   | decreasing    | 6.41 sec                                                          |
|                           | then                                     | 125 Vrms                   | decreasing    | 30 sec                                                            |
|                           |                                          | 115 Vrms                   |               |                                                                   |

| Test Condition                   | Start<br>Frequency | Transient Time | Level  | Duration | Transient |
|----------------------------------|--------------------|----------------|--------|----------|-----------|
| <b>Over Frequency Transients</b> | 5                  |                |        |          |           |
| A                                | 360 Hz             | 0.88 secs      | 800 Hz | ½ cycle  | 0.88 secs |
| В                                | 360 Hz             | 0.88 secs      | 800 Hz | 1second  | 0.88 secs |
| С                                | 360 Hz             | 0.48 secs      | 600 Hz | ½ cycle  | 0.48 secs |
| D                                | 360 Hz             | 0.48 secs      | 600 Hz | 1second  | 0.48 secs |
| Under Frequency Transien         | ts                 |                |        |          |           |
| E                                | 800 Hz             | 0.88 secs      | 360 Hz | ½ cycle  | 0.88 secs |
| F                                | 800 Hz             | 0.88 secs      | 360 Hz | 1second  | 0.88 secs |
| G                                | 600 Hz             | 0.48 secs      | 600 Hz | ½ cycle  | 0.40 secs |
| Н                                | 600 Hz             | 0.48 secs      | 600 Hz | 1second  | 0.40 secs |
| Combined Transient               |                    |                |        |          |           |
| I                                | 600 Hz             | 0.48 secs      | 360 Hz | ½ cycle  | 0.48 secs |
|                                  |                    | then 0.40 secs | 800 Hz | ½ cycle  | 0.40 secs |

| Test Condition      | Voltage        | Frequency | Time at Test Condition |
|---------------------|----------------|-----------|------------------------|
| Nominal Voltages    |                |           |                        |
| Α                   | 115 V          | 360 Hz    | 30 min                 |
| В                   | 115 V          | 400 Hz    | 30 min                 |
| С                   | 115 V          | 600 Hz    | 30 min                 |
| D                   | 115 V          | 800 Hz    | 30 min                 |
| Normal Low Steady S | State Voltages |           |                        |
| E                   | 108 V          | 360 Hz    | 30 min                 |
| F                   | 108 V          | 400 Hz    | 30 min                 |
| G                   | 108 V          | 440 Hz    | 5 min                  |
| н                   | 108 V          | 480 Hz    | 5 min                  |
| I                   | 108 V          | 520 Hz    | 5 min                  |
| J                   | 108 V          | 560 Hz    | 5 min                  |
| К                   | 108 V          | 600 Hz    | 30 min                 |
| L                   | 108 V          | 520 Hz    | 5 min                  |
| М                   | 108 V          | 540 Hz    | 5 min                  |
| N                   | 108 V          | 560 Hz    | 5 min                  |
| 0                   | 108 V          | 570 Hz    | 5 min                  |
| Р                   | 108 V          | 580 Hz    | 5 min                  |
| Q                   | 108 V          | 600 Hz    | 30 min                 |
| R                   | 108 V          | 640 Hz    | 5 min                  |
| S                   | 108 V          | 680 Hz    | 5 min                  |
| Т                   | 108 V          | 720 Hz    | 5 min                  |
| U                   | 108 V          | 760 Hz    | 5 min                  |
| V                   | 108 V          | 800 Hz    | 30 min                 |
| Normal High Steady  | State Voltages |           |                        |
| W                   | 118 V          | 360 Hz    | 30 min                 |
| Х                   | 118 V          | 400 Hz    | 30 min                 |
| Y                   | 118 V          | 440 Hz    | 5 min                  |
| Z                   | 118 V          | 480 Hz    | 5 min                  |
| AA                  | 118 V          | 520 Hz    | 5 min                  |
| BB                  | 118 V          | 560 Hz    | 5 min                  |
| CC                  | 118 V          | 600 Hz    | 30 min                 |
| DD                  | 118 V          | 520 Hz    | 5 min                  |
| EE                  | 118 V          | 540 Hz    | 5 min                  |
| FF                  | 118 V          | 560 Hz    | 5 min                  |
| GG                  | 118 V          | 570 Hz    | 5 min                  |
| нн                  | 118 V          | 580 Hz    | 5 min                  |
| П                   | 118 V          | 600 Hz    | 30 min                 |
| 11                  | 118 V          | 640 Hz    | 5 min                  |
| КК                  | 118 V          | 680 Hz    | 5 min                  |
| LL                  | 118 V          | 720 Hz    | 5 min                  |
| ММ                  | 118 V          | 760 Hz    | 5 min                  |
| NN                  | 118 V          | 800 Hz    | 30 min                 |

SVF601: All Test Conditions Executed at 400Hz, 360Hz, 600Hz and 800Hz.

| Test Condition | Duration of Power Failure |  |
|----------------|---------------------------|--|
| А              | 100 msec                  |  |
| В              | 500 msec                  |  |
| С              | 3 secs                    |  |
| D              | 7 secs                    |  |

SVF603: All Test Conditions Executed at 400Hz, 360Hz, 600Hz and 800Hz.

| Test Condition            | Phases       | Duration |
|---------------------------|--------------|----------|
| Physical Means Prevention | Verify/Check |          |
| If Not:                   |              |          |
| Reversed Phase Rotation   | C-B-A        | 30 mins  |
| Correct Phase Rotation    | A-B-C        | 30 mins  |

# 9.4.4 TVF Test Details by Test Number (Three Phase, 115V, Variable Frequency)

## TVF101

| Test Plan | Description                                                                      | Run at F =            |  |
|-----------|----------------------------------------------------------------------------------|-----------------------|--|
| Stimulus: | Apply 115VL-N, 360-800 Hz                                                        |                       |  |
|           | Close CB or contactor to EUT and measure Inrush current                          |                       |  |
|           | Allow EUT to warm up before taking additional<br>measurements                    |                       |  |
|           | Allow power to run for 15 mins.                                                  |                       |  |
| Measure   | Inrush Current, all phases                                                       | 400, 360, 600, 800 Hz |  |
|           | Steady state voltage, current, power, Load Balance                               | 400, 360, 600, 800 Hz |  |
|           | Verify no half wave rectification is used                                        | 400Hz only            |  |
|           | Current Harmonics / All phases using HAS option                                  | 400Hz only            |  |
| Run at:   | 400Hz, 360Hz, 600Hz, 800Hz Note: Frequency jumps between tests done over 40 secs |                       |  |
| Repeat    | For each EUT operating mode                                                      |                       |  |

#### TVF102

| Test Condition     | Voltage                           | Frequency | Time at Test Condition |  |  |
|--------------------|-----------------------------------|-----------|------------------------|--|--|
| Nominal Voltages   | Nominal Voltages                  |           |                        |  |  |
| Α                  | 115 V                             | 360 Hz    | 30 min                 |  |  |
| В                  | 115 V                             | 400 Hz    | 30 min                 |  |  |
| С                  | 115 V                             | 600 Hz    | 30 min                 |  |  |
| D                  | 115 V                             | 800 Hz    | 30 min                 |  |  |
| Normal Low Steady  | State Voltages                    |           |                        |  |  |
| E                  | 108 V                             | 360 Hz    | 30 min                 |  |  |
| F                  | 108 V                             | 400 Hz    | 30 min                 |  |  |
| G                  | 108 V                             | 440 Hz    | 5 min                  |  |  |
| н                  | 108 V                             | 480 Hz    | 5 min                  |  |  |
| I                  | 108 V                             | 520 Hz    | 5 min                  |  |  |
| J                  | 108 V                             | 560 Hz    | 5 min                  |  |  |
| К                  | 108 V                             | 600 Hz    | 30 min                 |  |  |
| L                  | 108 V                             | 520 Hz    | 5 min                  |  |  |
| М                  | 108 V                             | 540 Hz    | 5 min                  |  |  |
| N                  | 108 V                             | 560 Hz    | 5 min                  |  |  |
| 0                  | 108 V                             | 570 Hz    | 5 min                  |  |  |
| Р                  | 108 V                             | 580 Hz    | 5 min                  |  |  |
| Q                  | 108 V                             | 600 Hz    | 30 min                 |  |  |
| R                  | 108 V                             | 640 Hz    | 5 min                  |  |  |
| S                  | 108 V                             | 680 Hz    | 5 min                  |  |  |
| Т                  | 108 V                             | 720 Hz    | 5 min                  |  |  |
| U                  | 108 V                             | 760 Hz    | 5 min                  |  |  |
| V                  | 108 V                             | 800 Hz    | 30 min                 |  |  |
| Normal High Steady | Normal High Steady State Voltages |           |                        |  |  |
| W                  | 118 V                             | 360 Hz    | 30 min                 |  |  |
| Х                  | 118 V                             | 400 Hz    | 30 min                 |  |  |
| Ŷ                  | 118 V                             | 440 Hz    | 5 min                  |  |  |
| Z                  | 118 V                             | 480 Hz    | 5 min                  |  |  |
| AA                 | 118 V                             | 520 Hz    | 5 min                  |  |  |

| Test Condition     | Voltage   | Frequency | Time at Test Condition |
|--------------------|-----------|-----------|------------------------|
| BB                 | 118 V     | 560 Hz    | 5 min                  |
| CC                 | 118 V     | 600 Hz    | 30 min                 |
| DD                 | 118 V     | 520 Hz    | 5 min                  |
| EE                 | 118 V     | 540 Hz    | 5 min                  |
| FF                 | 118 V     | 560 Hz    | 5 min                  |
| GG                 | 118 V     | 570 Hz    | 5 min                  |
| НН                 | 118 V     | 580 Hz    | 5 min                  |
| II                 | 118 V     | 600 Hz    | 30 min                 |
| 11                 | 118 V     | 640 Hz    | 5 min                  |
| КК                 | 118 V     | 680 Hz    | 5 min                  |
| LL                 | 118 V     | 720 Hz    | 5 min                  |
| MM                 | 118 V     | 760 Hz    | 5 min                  |
| NN                 | 118 V     | 800 Hz    | 30 min                 |
| Unbalanced Voltage | S         |           |                        |
| 00                 | Van 108 V | 360 Hz    | 30 min                 |
|                    | Vbn 115 V |           |                        |
|                    | Vcn 115 V |           |                        |
| PP                 | Van 118 V | 360 Hz    | 30 min                 |
|                    | Vbn 115 V |           |                        |
|                    | Vcn 115 V |           |                        |
| QQ                 | Van 108 V | 800 Hz    | 30 min                 |
|                    | Vbn 115 V |           |                        |
|                    | Vcn 115 V |           |                        |
| RR                 | Van 118 V | 800 Hz    | 30 min                 |
|                    | Vbn 115 V |           |                        |
|                    | Vcn 115 V |           |                        |

| Test Conditions | Phase Van | Phase Vbn | Phase Vcn |
|-----------------|-----------|-----------|-----------|
|                 | Van       | Vbn       | Vcn       |
| Α               | 0°        | 116°      | 240°      |
| В               | 0°        | 124°      | 240°      |

TVF104: All Test Conditions Executed at 400Hz, 360Hz, 600Hz and 800Hz.

| Test Conditions | Average Vrms | Modulation Frequency | Amplitude |
|-----------------|--------------|----------------------|-----------|
| A-1             | 115V         |                      |           |
| A-2             | 109.25V      | 1.0Hz                | 0.375Vrms |
| A-3             | 116.75V      |                      |           |
| B-1             | 115V         |                      |           |
| B-2             | 109.25V      | 1.7Hz                | 0.375Vrms |
| B-3             | 116.75V      |                      |           |
| C-1             | 115V         |                      | 2.5Vrms   |
| C-2             | 109.25V      | 10Hz                 |           |
| C-3             | 116.75V      |                      |           |
| D-1             | 115V         |                      |           |
| D-2             | 109.25V      | 25Hz                 | 2.5Vrms   |
| D-3             | 116.75V      |                      |           |
| E-1             | 115V         | 70Hz                 | 0.375Vrms |

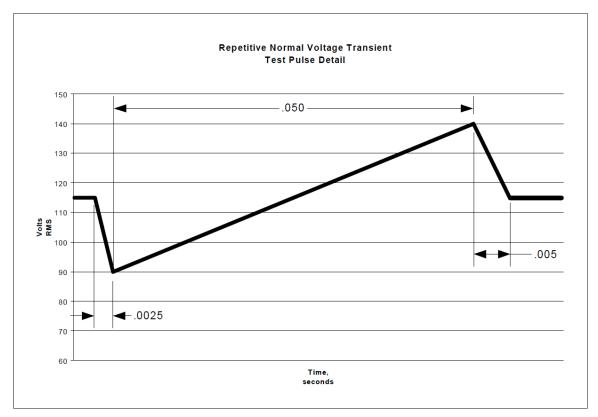
| Test Conditions | Average Vrms | Modulation Frequency | Amplitude |
|-----------------|--------------|----------------------|-----------|
| E-2             | 109.25V      |                      |           |
| E-3             | 116.75V      |                      |           |
| F-1             | 115V         |                      |           |
| F-2             | 109.25V      | 100Hz                | 0.375Vrms |
| F-3             | 116.75V      |                      |           |
| G-1             | 115V         |                      |           |
| G-2             | 109.25V      | 200Hz                | 0.375Vrms |
| G-3             | 116.75V      |                      |           |

| Test Condition | Average Frequency | Rate of Freq. Change | Amplitude |
|----------------|-------------------|----------------------|-----------|
| А              | 400 Hz            | 1 Hz/sec             | ± 2Hz     |
| В              | 400 Hz            | 5 Hz/sec             |           |
| С              | 400 Hz            | 10 Hz/sec            |           |
| D              | 400 Hz            | 25 Hz/sec            |           |
| E              | 400 Hz            | 100 Hz/sec           |           |
|                |                   |                      |           |
| А              | 362 Hz            | 1 Hz/sec             | ± 2Hz     |
| В              | 362 Hz            | 5 Hz/sec             |           |
| С              | 362 Hz            | 10 Hz/sec            |           |
| D              | 362 Hz            | 25 Hz/sec            |           |
| E              | 362 Hz            | 100 Hz/sec           |           |
|                |                   |                      |           |
| А              | 600 Hz            | 1 Hz/sec             | ± 2Hz     |
| В              | 600 Hz            | 5 Hz/sec             |           |
| С              | 600 Hz            | 10 Hz/sec            |           |
| D              | 600 Hz            | 25 Hz/sec            |           |
| E              | 600 Hz            | 100 Hz/sec           |           |
|                |                   |                      |           |
| А              | 798 Hz            | 1 Hz/sec             | ± 2Hz     |
| В              | 798 Hz            | 5 Hz/sec             |           |
| С              | 798 Hz            | 10 Hz/sec            |           |
| D              | 798 Hz            | 25 Hz/sec            |           |
| E              | 798 Hz            | 100 Hz/sec           |           |

TVF106: All Test Conditions Executed at 400Hz, 360Hz, 600Hz and 800Hz.

| Test Condition | Frequency of Voltage<br>Distortion | Amplitude of Voltage Distortion |
|----------------|------------------------------------|---------------------------------|
| А              | 50 Hz                              | 0.316 Vrms                      |
| В              | 100 Hz                             | 0.316 Vrms                      |
| С              | 500 Hz                             | 1.580 Vrms                      |
| D              | 1 kHz                              | 3.160 Vrms                      |
| E              | 2 kHz                              | 3.160 Vrms                      |
| F              | 3 kHz                              | 3.160 Vrms                      |
| G              | 5 kHz                              | 1.900 Vrms                      |
| Н              | 10 kHz                             | 0.950 Vrms                      |

| Harmonic    | MIL-STD-704 Rev B - F<br>Percent of Fund. |
|-------------|-------------------------------------------|
| Fundamental | 100%                                      |
| 2nd         | 0%                                        |
| 3rd         | 2.75%                                     |
| 4th         | 0%                                        |
| 5th         | 2.75%                                     |
| 6th         | 0%                                        |
| 7th         | 1.97%                                     |
| 8th         | 0%                                        |
| 9th         | 1.53%                                     |
| 10th        | 0%                                        |
| 11th        | 1.25%                                     |
| 12th        | 0%                                        |
| 13th        | 1.06%                                     |
| 14th        | 0%                                        |
| 15th        | 0.92%                                     |


## TVF107: All Test Conditions Executed at 400Hz, 360Hz, 600Hz and 800Hz.

TVF108: All Test Conditions Executed at 400Hz, 360Hz, 600Hz and 800Hz.

| Test Condition | Direct Current Component of AC Voltage |  |
|----------------|----------------------------------------|--|
| А              | + 0.10V                                |  |
| В              | - 0.10 V                               |  |

| Test Condition          | Time from Steady<br>State Voltage to<br>Voltage Transient<br>Level (ms) | Voltage Transient<br>Level<br>(Vrms) | Duration at<br>Voltage<br>Transient Level<br>(ms) | Voltage Transient<br>Level to Steady<br>State Voltage (ms) |
|-------------------------|-------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------|------------------------------------------------------------|
| Overvoltage Transients  |                                                                         |                                      |                                                   |                                                            |
| Α                       | < ½ cycle                                                               | 140 Vrms                             | 60 msec                                           | < ½ cycle                                                  |
| В                       | < ½ cycle                                                               | 140 Vrms                             | 60 msec                                           | 25 msec                                                    |
| С                       | < ½ cycle                                                               | 160 Vrms                             | 34 msec                                           | < ½ cycle                                                  |
| D                       | < ½ cycle                                                               | 160 Vrms                             | 34 msec                                           | 52 msec                                                    |
| E                       | < ½ cycle                                                               | 180 Vrms                             | 10 msec                                           | < ½ cycle                                                  |
| F                       | < ½ cycle                                                               | 180 Vrms                             | 10 msec                                           | 77 msec                                                    |
| G                       | < ½ cycle                                                               | 180 Vrms                             | 10 msec                                           | < ½ cycle                                                  |
|                         |                                                                         | (3 times)                            | every 0.5 sec                                     |                                                            |
| Undervoltage Transients |                                                                         |                                      |                                                   |                                                            |
| н                       | < ½ cycle                                                               | 90 Vrms                              | 35 msec                                           | < ½ cycle                                                  |
| I                       | < ½ cycle                                                               | 90 Vrms                              | 35 msec                                           | 45 msec                                                    |
| J                       | < ½ cycle                                                               | 80 Vrms                              | 10 msec                                           | < ½ cycle                                                  |
| К                       | < ½ cycle                                                               | 80 Vrms                              | 10 msec                                           | 70 msec                                                    |
| L                       | < ½ cycle                                                               | 80 Vrms                              | 10 msec                                           | < ½ cycle                                                  |
|                         |                                                                         | (3 times)                            | every 0.5 sec                                     |                                                            |
| Combined Transient      |                                                                         |                                      |                                                   |                                                            |
| М                       | < ½ cycle                                                               | 80 Vrms                              | 10 msec                                           | < ½ cycle                                                  |
|                         | then < ½ cycle                                                          | 180 Vrms                             | 10 msec                                           | 77 msec                                                    |
| Repetitive Normal Test  |                                                                         |                                      |                                                   |                                                            |
|                         | See Figures                                                             |                                      |                                                   |                                                            |

## TVF109: All Test Conditions Executed at 400Hz, 360Hz, 600Hz and 800Hz.





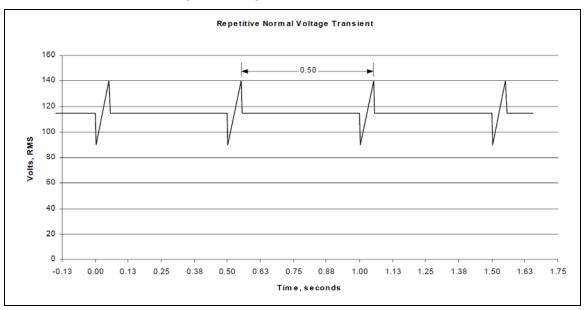



Figure 18: Repetitive Voltage transients.

| Test Condition     | Start Frequency | Time from Steady<br>State Freq. to<br>Freq. Transient<br>Level | Freq.<br>Transient<br>Level | Duration at<br>Freq.<br>Transient<br>Level | Time from Freq.<br>Transient Level to<br>Steady State Freq. |
|--------------------|-----------------|----------------------------------------------------------------|-----------------------------|--------------------------------------------|-------------------------------------------------------------|
| Overfrequency T    | ransients       |                                                                |                             |                                            |                                                             |
| Α                  | 360 Hz          | 1.76 seconds                                                   | 800 Hz                      | 1/2 cycle                                  | 1.76 seconds                                                |
| В                  | 360 Hz          | 1.76 seconds                                                   | 800 Hz                      | 1 seconds                                  | 1.76 seconds                                                |
| С                  | 360 Hz          | 0.96 seconds                                                   | 600 Hz                      | 1/2 cycle                                  | 0.96 seconds                                                |
| D                  | 360 Hz          | 0.96 seconds                                                   | 600 Hz                      | 1 seconds                                  | 0.96 seconds                                                |
| Underfrequency     | Transients      | •<br>•                                                         |                             |                                            |                                                             |
| E                  | 800 Hz          | 1.76 seconds                                                   | 360 Hz                      | 1/2 cycle                                  | 1.76 seconds                                                |
| F                  | 800 Hz          | 1.76 seconds                                                   | 360 Hz                      | 1 seconds                                  | 1.76 seconds                                                |
| G                  | 800 Hz          | 0.80 seconds                                                   | 600 Hz                      | 1/2 cycle                                  | 0.80 seconds                                                |
| Н                  | 800 Hz          | 0.80 seconds                                                   | 600 Hz                      | 1 seconds                                  | 0.80 seconds                                                |
| Combined Transient |                 |                                                                |                             |                                            |                                                             |
| I                  | 600 Hz          | 0.96 seconds                                                   | 360 Hz                      | 1/2 cycle                                  | 0.96 seconds                                                |
|                    |                 | then 0.80 seconds                                              | 800 Hz                      | 1/2 cycle                                  | then 0.80 seconds                                           |

TVF201: All Test Conditions Executed at 400Hz, 360Hz, 600Hz and 800Hz.

| Test Condition | Steady State<br>Voltage | T fall    | Duration of Interrupt                                                                                                           | T rise     |
|----------------|-------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------|------------|
| Α              | 115V                    | < ½ cycle | 50 msec                                                                                                                         | < ½ cycle  |
| В              | 108V                    | < ½ cycle | 50 msec                                                                                                                         | < ½ cycle  |
| С              | 118V                    | < ½ cycle | 50 msec                                                                                                                         | < ½ cycle  |
| D              | 115V                    | < ½ cycle | 30 msec                                                                                                                         | < ½ cycle  |
| E              | 108V                    | < ½ cycle | 30 msec                                                                                                                         | < ½ cycle  |
| F              | 118V                    | < ½ cycle | 30 msec                                                                                                                         | < ½ cycle  |
| G              | 115V                    | < ½ cycle | 10 msec                                                                                                                         | <1⁄2 cycle |
| Н              | 108V                    | < ½ cycle | 10 msec                                                                                                                         | < ½ cycle  |
| I              | 118V                    | < ½ cycle | 10 msec                                                                                                                         | < ½ cycle  |
| J              | 115V                    | < ½ cycle | 50 msec (repeated 3 times, separated by 0.5 sec )                                                                               | < ½ cycle  |
| к              | 115V                    | < ½ cycle | 50 msec (followed by a normal<br>voltage transient of 160 Vrms for 30<br>msec and return to steady state<br>voltage in 40 msec) | 40 msec    |
| L              | 115V                    | < ½ cycle | 50 msec (followed by a normal<br>voltage transient of 70 Vrms for 30<br>msec and return to steady state<br>voltage in 40 msec)  | 40 msec    |

**Note:** For XFMR test files, Test conditions A through J and L are executed on the Low Voltage range. Test condition K is executed last after switching to the high voltage range.

| Test Conditions | Voltage L-N | Frequency |
|-----------------|-------------|-----------|
| Α               | 100V        | 400Hz     |
| В               | 100V        | 360Hz     |
| С               | 100V        | 600Hz     |
| D               | 100V        | 800Hz     |
| E               | 125V        | 400Hz     |
| F               | 125V        | 360Hz     |
| G               | 125V        | 600Hz     |
| н               | 125V        | 800Hz     |

| Abnormal Limit | 704F  |
|----------------|-------|
| Voltage        | 100 V |
| ALSS           |       |
| Voltage        | 125 V |
| AHSS           |       |
| Frequency      | 360Hz |
| ALSS           |       |
| Frequency      | 800Hz |
| AHSS           |       |

#### TVF302: All Test Conditions Executed at 400Hz, 360Hz, 600Hz and 800Hz.

| Test Condition       | SS Voltage to Voltage<br>Transient Level | Voltage<br>Transient Level | Duration                              | Time From Voltage Level to<br>SS Voltage or Next Voltage<br>Level |
|----------------------|------------------------------------------|----------------------------|---------------------------------------|-------------------------------------------------------------------|
| Overvoltage Transier | its                                      |                            |                                       |                                                                   |
| Α                    | < ½ cycle                                | 140 Vrms                   | 180 msec                              | < ½ cycle                                                         |
| В                    | < ½ cycle                                | 140 Vrms                   | 180 msec                              | 87 msec                                                           |
|                      | then                                     | 135 Vrms                   | decreasing                            | 253 msec                                                          |
|                      | then                                     | 130 Vrms                   | decreasing                            | 6.41 sec                                                          |
|                      | then                                     | 125 Vrms                   | decreasing                            | >10 sec                                                           |
|                      |                                          | 115 Vrms                   |                                       |                                                                   |
| C                    | < ½ cycle                                | 160 Vrms                   | 78 msec                               | < ½ cycle                                                         |
| D                    | < ½ cycle                                | 160 Vrms                   | 78 msec                               | 31 msec                                                           |
|                      | then                                     | 150 Vrms                   | decreasing                            | 71 msec                                                           |
|                      | then                                     | 140 Vrms                   | decreasing                            | 87 msec                                                           |
|                      | then                                     | 135 Vrms                   | decreasing                            | 253 msec                                                          |
|                      | then                                     | 130 Vrms                   | decreasing                            | 6.41 sec                                                          |
|                      | then                                     | 125 Vrms                   | decreasing                            | >10 sec                                                           |
|                      |                                          | 115 Vrms                   |                                       |                                                                   |
| E                    | < ½ cycle                                | 180 Vrms                   | 50 msec                               | < ½ cycle                                                         |
| F                    | < ½ cycle                                | 180 Vrms                   | 50 msec                               | 11 msec                                                           |
|                      | then                                     | 170 Vrms                   | decreasing                            | 17 msec                                                           |
|                      | then                                     | 160 Vrms                   | decreasing                            | 31 msec                                                           |
|                      | then                                     | 150 Vrms                   | decreasing                            | 71 msec                                                           |
|                      | then                                     | 140 Vrms                   | decreasing                            | 87 msec                                                           |
|                      | then                                     | 135 Vrms                   | decreasing                            | 253 msec                                                          |
|                      | then                                     | 130 Vrms                   | decreasing                            | 6.41 sec                                                          |
|                      | then                                     | 125 Vrms                   | decreasing                            | >10 sec                                                           |
|                      |                                          | 115 Vrms                   |                                       |                                                                   |
| G                    | < ½ cycle                                | 180 Vrms                   | 20 msec                               | < ½ cycle                                                         |
|                      |                                          | (3 times)                  | every 0.5 sec                         |                                                                   |
| Undervoltage Transie | ents                                     |                            |                                       |                                                                   |
| Н                    | <½ cycle                                 | 85 Vrms                    | 180 msec                              | < ½ cycle                                                         |
| I                    | < ½ cycle                                | 85 Vrms                    | 180 msec                              | 87 msec                                                           |
|                      | then                                     | 90 Vrms                    | increasing                            | 253 msec                                                          |
|                      | then                                     | 95 Vrms                    | increasing                            | 6.41 sec                                                          |
|                      | then                                     | 100 Vrms                   | increasing                            | >10 sec                                                           |
|                      |                                          | 115 Vrms                   | , , , , , , , , , , , , , , , , , , , |                                                                   |
| J                    | < ½ cycle                                | 65 Vrms                    | 78 msec                               | < ½ cycle                                                         |
| К                    | < ½ cycle                                | 65 Vrms                    | 78 msec                               | 31 msec                                                           |

| Test Condition            | SS Voltage to Voltage<br>Transient Level | Voltage<br>Transient Level | Duration      | Time From Voltage Level to<br>SS Voltage or Next Voltage<br>Level |
|---------------------------|------------------------------------------|----------------------------|---------------|-------------------------------------------------------------------|
|                           | then                                     | 75 Vrms                    | increasing    | 71 msec                                                           |
|                           | then                                     | 85 Vrms                    | increasing    | 87 msec                                                           |
|                           | then                                     | 90 Vrms                    | increasing    | 253 msec                                                          |
|                           | then                                     | 95 Vrms                    | increasing    | 6.41 sec                                                          |
|                           | then                                     | 100 Vrms                   | increasing    | >10 sec                                                           |
|                           |                                          | 115 Vrms                   |               |                                                                   |
| L                         | < ½ cycle                                | 45 Vrms                    | 50 msec       | < ½ cycle                                                         |
| М                         | < ½ cycle                                | 45 Vrms                    | 50 msec       | 11 msec                                                           |
|                           | then                                     | 55 Vrms                    | increasing    | 17 msec                                                           |
|                           | then                                     | 65 Vrms                    | increasing    | 31 msec                                                           |
|                           | then                                     | 75 Vrms                    | increasing    | 71 msec                                                           |
|                           | then                                     | 85 Vrms                    | increasing    | 87 msec                                                           |
|                           | then                                     | 90 Vrms                    | increasing    | 253 msec                                                          |
|                           | then                                     | 95 Vrms                    | increasing    | 6.41 sec                                                          |
|                           | then                                     | 100 Vrms                   | increasing    | >10 sec                                                           |
|                           |                                          | 115 Vrms                   |               |                                                                   |
| Ν                         | < ½ cycle                                | 45 Vrms                    | 20 msec       | < ½ cycle                                                         |
|                           |                                          | (3 times)                  | every 0.5 sec |                                                                   |
| <b>Combined Transient</b> | t                                        |                            |               |                                                                   |
| 0                         | < ½ cycle                                | 45 Vrms then               | 20 msec       | < ½ cycle                                                         |
|                           | < ½ cycle                                | 180 Vrms                   | 50 msec       | 11 msec                                                           |
|                           | then                                     | 170 Vrms                   | decreasing    | 17 msec                                                           |
|                           | then                                     | 160 Vrms                   | decreasing    | 31 msec                                                           |
|                           | then                                     | 150 Vrms                   | decreasing    | 71 msec                                                           |
|                           | then                                     | 140 Vrms                   | decreasing    | 87 msec                                                           |
|                           | then                                     | 135 Vrms                   | decreasing    | 253 msec                                                          |
|                           | then                                     | 130 Vrms                   | decreasing    | 6.41 sec                                                          |
|                           | then                                     | 125 Vrms                   | decreasing    | >10 sec                                                           |
|                           |                                          | 115 Vrms                   |               |                                                                   |

| Test Condition                   | Start<br>Frequency | Transient Time | Level  | Duration | Transient |
|----------------------------------|--------------------|----------------|--------|----------|-----------|
| <b>Over Frequency Transients</b> | S                  |                |        |          |           |
| A                                | 360 Hz             | 0.88 secs      | 800 Hz | ½ cycle  | 0.88 secs |
| В                                | 360 Hz             | 0.88 secs      | 800 Hz | 1second  | 0.88 secs |
| С                                | 360 Hz             | 0.48 secs      | 600 Hz | ½ cycle  | 0.48 secs |
| D                                | 360 Hz             | 0.48 secs      | 600 Hz | 1second  | 0.48 secs |
| Under Frequency Transien         | ts                 |                |        |          |           |
| E                                | 800 Hz             | 0.88 secs      | 360 Hz | ½ cycle  | 0.88 secs |
| F                                | 800 Hz             | 0.88 secs      | 360 Hz | 1second  | 0.88 secs |
| G                                | 600 Hz             | 0.48 secs      | 600 Hz | ½ cycle  | 0.40 secs |
| Н                                | 600 Hz             | 0.48 secs      | 600 Hz | 1second  | 0.40 secs |
| Combined Transient               |                    |                |        |          |           |
| I                                | 600 Hz             | 0.48 secs      | 360 Hz | ½ cycle  | 0.48 secs |
|                                  |                    | then 0.40 secs | 800 Hz | ½ cycle  | 0.40 secs |

TVF401

| Test Condition     | Voltage   | Frequency | Time at Test Condition |
|--------------------|-----------|-----------|------------------------|
| Nominal Voltages   |           |           |                        |
| A                  | 115 V     | 360 Hz    | 30 min                 |
| В                  | 115 V     | 400 Hz    | 30 min                 |
| C                  | 115 V     | 600 Hz    | 30 min                 |
| D                  | 115 V     | 800 Hz    | 30 min                 |
| Normal Low Steady  |           |           |                        |
| Ε                  | 108 V     | 360 Hz    | 30 min                 |
| F                  | 108 V     | 400 Hz    | 30 min                 |
| G                  | 108 V     | 440 Hz    | 5 min                  |
| H                  | 108 V     | 480 Hz    | 5 min                  |
|                    | 108 V     | 520 Hz    | 5 min                  |
| J                  | 108 V     | 560 Hz    | 5 min                  |
| ĸ                  | 108 V     | 600 Hz    | 30 min                 |
| L                  | 108 V     | 520 Hz    | 5 min                  |
| M                  | 108 V     | 540 Hz    | 5 min                  |
| N                  | 108 V     | 560 Hz    | 5 min                  |
| 0                  | 108 V     | 570 Hz    | 5 min                  |
| P                  | 108 V     | 580 Hz    | 5 min                  |
| Q                  | 108 V     | 600 Hz    | 30 min                 |
| R                  | 108 V     | 640 Hz    | 5 min                  |
| S                  | 108 V     | 680 Hz    | 5 min                  |
| T                  | 108 V     | 720 Hz    | 5 min                  |
| U                  | 108 V     | 760 Hz    | 5 min                  |
| V                  | 108 V     | 800 Hz    | 30 min                 |
| Normal High Steady |           |           |                        |
|                    | 118 V     | 360 Hz    | 30 min                 |
| Х                  | 118 V     | 400 Hz    | 30 min                 |
| Ŷ                  | 118 V     | 440 Hz    | 5 min                  |
| Z                  | 118 V     | 480 Hz    | 5 min                  |
| AA                 | 118 V     | 520 Hz    | 5 min                  |
| BB                 | 118 V     | 560 Hz    | 5 min                  |
| CC                 | 118 V     | 600 Hz    | 30 min                 |
| DD                 | 118 V     | 520 Hz    | 5 min                  |
| EE                 | 118 V     | 540 Hz    | 5 min                  |
| FF                 | 118 V     | 560 Hz    | 5 min                  |
| GG                 | 118 V     | 570 Hz    | 5 min                  |
| HH                 | 118 V     | 580 Hz    | 5 min                  |
|                    | 118 V     | 600 Hz    | 30 min                 |
| 11                 | 118 V     | 640 Hz    | 5 min                  |
| КК                 | 118 V     | 680 Hz    | 5 min                  |
| LL                 | 118 V     | 720 Hz    | 5 min                  |
| ММ                 | 118 V     | 760 Hz    | 5 min                  |
| NN                 | 118 V     | 800 Hz    | 30 min                 |
| Unbalanced Voltage | s         |           |                        |
| 00                 | Van 108 V | 360 Hz    | 30 min                 |
|                    | Vbn 115 V |           |                        |
|                    | Vcn 115 V |           |                        |
| PP                 | Van 118 V | 360 Hz    | 30 min                 |
|                    | Vbn 115 V | 1         |                        |
|                    | Vcn 115 V | 1         |                        |
| QQ                 | Van 108 V | 800 Hz    | 30 min                 |

| Test Condition | Vol | tage  | Frequency | Time at Test Condition |
|----------------|-----|-------|-----------|------------------------|
|                | Vbn | 115 V |           |                        |
|                | Vcn | 115 V |           |                        |
| RR             | Van | 118 V | 800 Hz    | 30 min                 |
|                | Vbn | 115 V |           |                        |
|                | Vcn | 115 V |           |                        |

TVF601: All Test Conditions Executed at 400Hz, 360Hz, 600Hz and 800Hz.

| Test Condition | Duration of Power Failure |
|----------------|---------------------------|
| Α              | 100 msec                  |
| В              | 500 msec                  |
| С              | 3 secs                    |
| D              | 7 secs                    |

#### TVF602: All Test Conditions Executed at 400Hz, 360Hz, 600Hz and 800Hz.

| Test Condition           | Phases                  | Duration     | Repeat |  |  |
|--------------------------|-------------------------|--------------|--------|--|--|
| One Phase Power Failure  | One Phase Power Failure |              |        |  |  |
| А                        | Phase A                 | 7 seconds    | 5      |  |  |
| В                        | Phase B                 | 7 seconds    | 5      |  |  |
| С                        | Phase C                 | 7 seconds    | 5      |  |  |
| D                        | Phase A                 | Indefinitely | 1      |  |  |
| E                        | Phase B                 | Indefinitely | 1      |  |  |
| F                        | Phase C                 | Indefinitely | 1      |  |  |
| Two Phase Power Failures |                         |              |        |  |  |
| G                        | Phase A & B             | 7 seconds    | 5      |  |  |
| Н                        | Phase B & C             | 7 seconds    | 5      |  |  |
| I                        | Phase A & B             | Indefinitely | 1      |  |  |
| J                        | Phase B & C             | Indefinitely | 1      |  |  |

TVF603: All Test Conditions Executed at 400Hz, 360Hz, 600Hz and 800Hz.

| Test Condition                 | Phases       | Duration |
|--------------------------------|--------------|----------|
| Physical Means Prevention      | Verify/Check |          |
| If Not:                        |              |          |
| <b>Reversed Phase Rotation</b> | C-B-A        | 30 mins  |
| Correct Phase Rotation         | A-B-C        | 30 mins  |

## 9.4.5 SXF Test Details by Test Number (Single Phase, 115V, 60 Hz)

SXF101

| Test Plan | Description                                                |
|-----------|------------------------------------------------------------|
| Stimulus: | Apply 115VL-N, 60Hz                                        |
|           | Close CB or contactor to EUT and measure Inrush current    |
|           | Allow EUT to warm up before taking additional measurements |
|           | Allow power to run for 15 mins.                            |
| Measure   | Inrush Current, all phases                                 |
|           | Steady state voltage, current, power                       |
|           | Verify no half wave rectification is used                  |
|           | Current Harmonics / All phases using HAS option            |
| Repeat    | For each EUT operating mode                                |

#### SXF102

| Test Condition    | Voltage L-N       | Frequency |  |  |  |
|-------------------|-------------------|-----------|--|--|--|
| Balanced Voltages | Balanced Voltages |           |  |  |  |
| A                 | 115V              | 60.0Hz    |  |  |  |
| В                 | 115V              | 59.5Hz    |  |  |  |
| С                 | 115V              | 60.5Hz    |  |  |  |
| D                 | 108V              | 60.0Hz    |  |  |  |
| E                 | 108V              | 59.5Hz    |  |  |  |
| F                 | 108V              | 60.5Hz    |  |  |  |
| G                 | 118V              | 60.0Hz    |  |  |  |
| н                 | 118V              | 59.5Hz    |  |  |  |
| Ι                 | 118V              | 60.5Hz    |  |  |  |

#### SXF104

| Test Conditions | Average Vrms | Modulation Frequency | Amplitude |
|-----------------|--------------|----------------------|-----------|
| A               | 115V         | 1.0Hz                | 0.375Vrms |
|                 | 109V         |                      |           |
|                 | 117V         |                      |           |
| В               | 115V         | 1.5Hz                | 2.5Vrms   |
|                 | 109V         |                      |           |
|                 | 117V         |                      |           |
| С               | 115V         | 4Hz                  | 2.5Vrms   |
|                 | 109V         |                      |           |
|                 | 117V         |                      |           |
| D               | 115V         | 10Hz                 | 0.375Vrms |
|                 | 109V         |                      |           |
|                 | 117V         |                      |           |
| E               | 115V         | 15Hz                 | 0.375Vrms |
|                 | 109V         |                      |           |
|                 | 117V         |                      |           |
| F               | 115V         | 30Hz                 | 0.375Vrms |
|                 | 109V         |                      |           |
|                 | 117V         |                      |           |

#### SXF105

| Test Condition | Average Frequency | Rate of Freq. Change | Amplitude |
|----------------|-------------------|----------------------|-----------|
| A-1            | 60.00 Hz          | 0.1 Hz/sec           | ± 0.25Hz  |
| A-2            | 59.75 Hz          |                      |           |
| A-3            | 60.75 Hz          |                      |           |
| B-1            | 60.00 Hz          | 0.5 Hz/sec           |           |
| B-2            | 59.75 Hz          |                      |           |
| B-3            | 60.75 Hz          |                      |           |
| C-1            | 60.00 Hz          | 4 Hz/sec             |           |
| C-2            | 59.75 Hz          |                      |           |
| C-3            | 60.75 Hz          |                      |           |
| D-1            | 60.00 Hz          | 25 Hz/sec            |           |
| D-2            | 59.75 Hz          |                      |           |
| D-3            | 60.75 Hz          |                      |           |
| E-1            | 60.00 Hz          | 15 Hz/sec            |           |
| E-2            | 59.75 Hz          |                      |           |
| E-3            | 60.75 Hz          |                      |           |

#### SXF106

| Test Condition | Frequency of Voltage Distortion | Amplitude of Voltage Distortion |
|----------------|---------------------------------|---------------------------------|
| А              | 50 Hz                           | 1.000 Vrms                      |
| В              | 150 Hz                          | 3.162 Vrms                      |
| С              | 450 Hz                          | 3.162 Vrms                      |
| D              | 1 kHz                           | 1.333 Vrms                      |
| E              | 3 kHz                           | 0.473 Vrms                      |
| F              | 5 kHz                           | 0.282 Vrms                      |
| G              | 10 kHz                          | 0.150 Vrms                      |

| Harmonic    | MIL-STD-704 Rev B - F<br>Percent of Fund. |
|-------------|-------------------------------------------|
| Fundamental | 100%                                      |
| 2nd         | 0%                                        |
| 3rd         | 2.75%                                     |
| 4th         | 0%                                        |
| 5th         | 2.75%                                     |
| 6th         | 0%                                        |
| 7th         | 1.97%                                     |
| 8th         | 0%                                        |
| 9th         | 1.53%                                     |
| 10th        | 0%                                        |
| 11th        | 1.25%                                     |
| 12th        | 0%                                        |
| 13th        | 1.06%                                     |
| 14th        | 0%                                        |
| 15th        | 0.92%                                     |

| Test Condition | Direct Current Component of AC Voltage |
|----------------|----------------------------------------|
| A              | + 0.10V                                |
| В              | - 0.10 V                               |

| Test Condition     | Time from Steady State Voltage<br>to Voltage Transient Level (ms) | Voltage<br>Transient Level<br>(Vrms) | Duration at<br>Voltage<br>Transient<br>Level (ms) | Voltage Transient Level to<br>Steady State Voltage (ms) |
|--------------------|-------------------------------------------------------------------|--------------------------------------|---------------------------------------------------|---------------------------------------------------------|
| Overvoltage Transi | ents                                                              |                                      |                                                   |                                                         |
| A                  | N/A                                                               | 152 Vrms                             | 0.5 cycle                                         | N/A                                                     |
| В                  | < ½ cycle                                                         | 130 Vrms                             | 1 cycle                                           | < ½ cycle                                               |
| С                  | < ½ cycle                                                         | 130 Vrms                             | 1 cycle                                           | 250 msec                                                |
| D                  | < ½ cycle                                                         | 130 Vrms                             | 1 cycle                                           | < ½ cycle                                               |
|                    |                                                                   | (3 times)                            | every 0.5 sec                                     |                                                         |
| Undervoltage Tran  | Undervoltage Transients                                           |                                      |                                                   |                                                         |
| E                  | N/A                                                               | 31 Vrms                              | 0.5 cycle                                         | N/A                                                     |
| F                  | < ½ cycle                                                         | 70 Vrms                              | 1 cycle                                           | < ½ cycle                                               |
| G                  | < ½ cycle                                                         | 70 Vrms                              | 1 cycle                                           | 107 msec                                                |
| н                  | < ½ cycle                                                         | 70 Vrms                              | 1 cycle                                           | < ½ cycle                                               |
|                    |                                                                   | (3 times)                            | every 0.5 sec                                     |                                                         |
| Combined Transier  | Combined Transient                                                |                                      |                                                   |                                                         |
| 1                  | < ½ cycle                                                         | 70 Vrms                              | 1 cycle                                           | < ½ cycle                                               |
|                    | then < ½ cycle                                                    | 130 Vrms                             | 1 cycle                                           | 250 msec                                                |
| Repetitive Normal  | Repetitive Normal Test                                            |                                      |                                                   |                                                         |
|                    | See Figures                                                       |                                      |                                                   |                                                         |

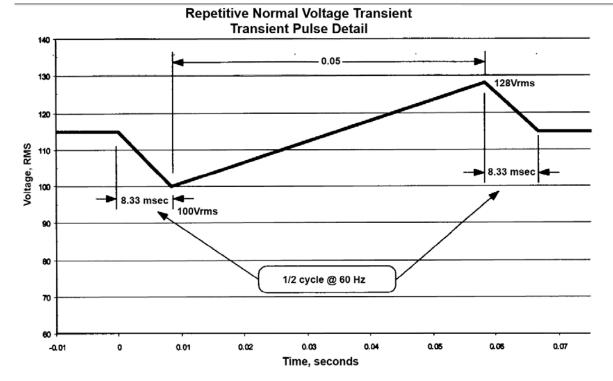



Figure 19: Voltage Transition Pulse Details - SXF

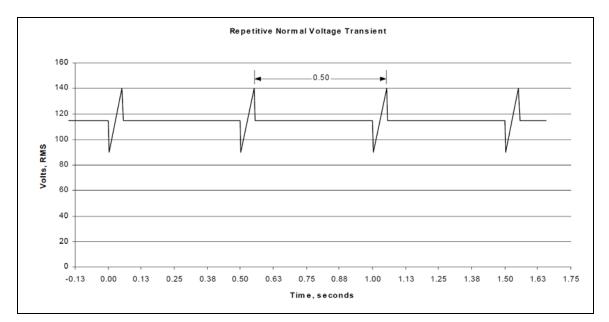



Figure 20: Repetitive Voltage transients.

| Test Condition            | Time from Steady<br>State Freq. to Freq.<br>Transient Level | Freq. Transient Level | Duration at Freq.<br>Transient Level | Time from Freq.<br>Transient Level to<br>Steady State Freq. |
|---------------------------|-------------------------------------------------------------|-----------------------|--------------------------------------|-------------------------------------------------------------|
| <b>Overfrequency Tran</b> | nsients                                                     |                       |                                      |                                                             |
| Α                         | 10 msec                                                     | 61 Hz                 | 0.5 cycle                            | 10 msec                                                     |
| В                         | 10 msec                                                     | 61 Hz                 | 5 seconds                            | 10 msec                                                     |
| Underfrequency Transients |                                                             |                       |                                      |                                                             |
| С                         | 10 msec                                                     | 59 Hz                 | 0.5 cycle                            | 10 msec                                                     |
| D                         | 10 msec                                                     | 59 Hz                 | 5 seconds                            | 10 msec                                                     |
| Combined Transient        |                                                             |                       |                                      |                                                             |
| E                         | 10 msec                                                     | 59 Hz                 | 0.5 cycle                            | 10 msec                                                     |
|                           | then 10 msec                                                | 61 Hz                 | 0.5 cycle                            | 10 msec                                                     |

| Test Condition | Steady State Voltage | T fall    | Duration of Interrupt                                                                                                               | T rise    |
|----------------|----------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Α              | 115V                 | < ½ cycle | 50 msec                                                                                                                             | < ½ cycle |
| В              | 105V                 | < ½ cycle | 50 msec                                                                                                                             | < ½ cycle |
| С              | 125V                 | < ½ cycle | 50 msec                                                                                                                             | < ½ cycle |
| D              | 115V                 | < ½ cycle | 30 msec                                                                                                                             | < ½ cycle |
| E              | 105V                 | < ½ cycle | 30 msec                                                                                                                             | < ½ cycle |
| F              | 125V                 | < ½ cycle | 30 msec                                                                                                                             | < ½ cycle |
| G              | 115V                 | < ½ cycle | 10 msec                                                                                                                             | < ½ cycle |
| н              | 105V                 | < ½ cycle | 10 msec                                                                                                                             | < ½ cycle |
| I              | 125V                 | < ½ cycle | 10 msec                                                                                                                             | < ½ cycle |
| J              | 115V                 | < ½ cycle | 50 msec (repeated 3 times,<br>separated by 0.5 sec )                                                                                | < ½ cycle |
| К              | 115V                 | < ½ cycle | 50 msec (followed by a normal<br>voltage transient of 130 Vrms<br>for 30 msec and return to<br>steady state voltage in 250<br>msec) | 250 msec  |
| L              | 115V                 | < ½ cycle | 50 msec (followed by a normal<br>voltage transient of 70 Vrms for<br>1 cycle and return to steady<br>state voltage in 107 msec)     | 107 msec  |

| Test Condition | Voltage | Frequency |
|----------------|---------|-----------|
| Α              | 115     | 59.5      |
| В              | 115     | 60.5      |
| С              | 100     | 60.0      |
| D              | 100     | 59.5      |
| E              | 100     | 60.5      |
| F              | 125     | 60.0      |
| G              | 125     | 59.5      |
| н              | 125     | 60.5      |

| Abnormal Limit | 704F    |
|----------------|---------|
| Voltage        | 100 V   |
| ALSS           |         |
| Voltage        | 125 V   |
| AHSS           |         |
| Frequency      | 59.5 Hz |
| ALSS           |         |
| Frequency      | 60.5 Hz |
| AHSS           |         |

| Test Condition               | Time From Steady<br>State Voltage to<br>Voltage Transient<br>Level milliseconds | Voltage Transient<br>Level Vrms | Duration at Voltage<br>Transient Level<br>milliseconds | Time From Voltage<br>Transient Level to<br>Steady State Voltage<br>or Next Voltage Level |
|------------------------------|---------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------|
| <b>Overvoltage Transient</b> | S                                                                               |                                 |                                                        |                                                                                          |
| Α                            | < ½ cycle                                                                       | 180 Vrms                        | ½ cycle                                                | < ½ cycle                                                                                |
| В                            | < ½ cycle                                                                       | 180 Vrms                        | ½ cycle                                                | 1 cycle                                                                                  |
|                              | then                                                                            | 147 Vrms                        | Decreasing                                             | 1 cycle                                                                                  |
|                              | then                                                                            | 140 Vrms                        | Decreasing                                             | 2.0 sec                                                                                  |
|                              |                                                                                 | 115 Vrms                        |                                                        |                                                                                          |
| С                            | < ½ cycle                                                                       | 160 Vrms                        | 1 cycle                                                | < ½ cycle                                                                                |
| D                            | < ½ cycle                                                                       | 160 Vrms                        | 1 cycle                                                | 1 cycle                                                                                  |
|                              | then                                                                            | 140 Vrms                        | Decreasing                                             | 2.0 sec                                                                                  |
|                              |                                                                                 | 115 Vrms                        |                                                        |                                                                                          |
| E                            | < ½ cycle                                                                       | 180 Vrms                        | ½ cycle                                                | < ½ cycle                                                                                |
|                              |                                                                                 | (3 times)                       | every 0.5 sec                                          |                                                                                          |
| Undervoltage Transier        | nts                                                                             |                                 | -                                                      |                                                                                          |
| F                            | < ½ cycle                                                                       | 50 Vrms                         | ½ cycle                                                | < ½ cycle                                                                                |
| G                            | < ½ cycle                                                                       | 50 Vrms                         | ½ cycle                                                | 1 cycle                                                                                  |
|                              | then                                                                            | 83 Vrms                         | Increasing                                             | 1 cycle                                                                                  |
|                              | then                                                                            | 90 Vrms                         | Increasing                                             | 2.0 sec                                                                                  |
|                              |                                                                                 | 115 Vrms                        |                                                        |                                                                                          |
| н                            | < ½ cycle                                                                       | 70 Vrms                         | 1 cycle                                                | < ½ cycle                                                                                |
| Ι                            | < ½ cycle                                                                       | 70 Vrms                         | 1 cycle                                                | 1 cycle                                                                                  |
|                              | then                                                                            | 90 Vrms                         | Increasing                                             | 2.0 sec                                                                                  |
|                              |                                                                                 | 115 Vrms                        |                                                        |                                                                                          |
| J                            | < ½ cycle                                                                       | 50 Vrms                         | ½ cycle                                                | < ½ cycle                                                                                |
|                              |                                                                                 | (3 times)                       | every 0.5 sec                                          |                                                                                          |
| Combined Transient           | ·                                                                               | •                               |                                                        |                                                                                          |
| К                            | < ½ cycle                                                                       | 50 Vrms                         | ½ cycle                                                | < ½ cycle                                                                                |
|                              | < ½ cycle                                                                       | 180 Vrms                        | ½ cycle                                                | 1 cycle                                                                                  |
|                              | then                                                                            | 147 Vrms                        | Decreasing                                             | 1 cycle                                                                                  |
|                              | then                                                                            | 140 Vrms                        | Decreasing                                             | 2.0 sec                                                                                  |
|                              |                                                                                 | 115 Vrms                        |                                                        |                                                                                          |

| Test Condition            | Transition Time           | Transient Level | Duration   | Transition2 |  |
|---------------------------|---------------------------|-----------------|------------|-------------|--|
| Overfrequency Transients  |                           |                 |            |             |  |
| A                         | ½ cycle                   | 61 Hz           | ½ cycle    | ½ cycle     |  |
| В                         | ½ cycle                   | 61 Hz           | 6.968 secs | ½ cycle     |  |
| Underfrequency Transients | Underfrequency Transients |                 |            |             |  |
| С                         | ½ cycle                   | 50 Hz           | ½ cycle    | ½ cycle     |  |
| D                         | ½ cycle                   | 50 Hz           | 6.968 secs | ½ cycle     |  |
| Combined Transient        |                           |                 |            |             |  |
| E                         | ½ cycle                   | 50 Hz then      | ½ cycle    | ½ cycle     |  |
|                           | ½ cycle                   | 61 Hz           | ½ cycle    | ½ cycle     |  |

# SXF401

| Test Condition | Voltage | Frequency |
|----------------|---------|-----------|
| А              | 115     | 59.5      |
| В              | 115     | 60.5      |
| С              | 105     | 60.0      |
| D              | 105     | 59.5      |
| E              | 105     | 60.5      |
| F              | 125     | 60.0      |
| G              | 125     | 59.5      |
| н              | 125     | 60.5      |

| Abnormal Limit | 704F   |
|----------------|--------|
| Voltage        | 105V   |
| ELSS           |        |
| Voltage        | 125V   |
| EHSS           |        |
| Frequency      | 59.5Hz |
| ELSS           |        |
| Frequency      | 60.5Hz |
| EHSS           |        |

# SXF601

| Test Condition | Duration of Power Failure |  |
|----------------|---------------------------|--|
| А              | 100 msec                  |  |
| В              | 500 msec                  |  |
| С              | 2 secs                    |  |

| Test Condition            | Phases       | Duration |
|---------------------------|--------------|----------|
| Physical Means Prevention | Verify/Check |          |
| If Not:                   |              |          |
| Reversed Phase Rotation   | N-A          | 30 mins  |
| Correct Phase Rotation    | A-N          | 30 mins  |

# 9.4.6 LDC 28VDC

# LDC101

| Test Plan | Description                                                | DCR AC Setting | Scaling |
|-----------|------------------------------------------------------------|----------------|---------|
| Stimulus: | Apply 28Vdc                                                | 14.8Vac        | 1.99    |
|           | Close CB or contactor to EUT and measure Inrush current    |                |         |
|           | Allow EUT to warm up before taking additional measurements |                |         |
|           | Allow power to run for 15 mins.                            |                |         |
| Measure   | Inrush Current, all phases                                 |                |         |
|           | Steady state voltage, current, power                       |                |         |
|           | Verify no half wave rectification is used                  |                |         |
|           | Current Harmonics / All phases using HAS option            |                |         |
|           |                                                            |                |         |
| Repeat    | For each EUT operating mode                                |                |         |

# LDC102

| Test Condition | Voltage DC | DCR AC Setting | Scaling |
|----------------|------------|----------------|---------|
| А              | 28 Vdc     | 14.8Vac        | 1.99    |
| В              | 22 Vdc     | 11.8Vac        | 1.99    |
| С              | 29 Vdc     | 15.3Vac        | 1.99    |

# LDC103 DCR AC Setting = 14.8Vac, Scaling = 1.99

| Test Condition | Frequency of Voltage<br>Distortion | Amplitude of Voltage<br>Distortion<br>Rev B, C, D | Amplitude of Voltage<br>Distortion<br>Rev E, F |
|----------------|------------------------------------|---------------------------------------------------|------------------------------------------------|
| А              | 10 Hz                              | 0.100 Vrms                                        | 0.100 Vrms                                     |
| В              | 25 Hz                              | 0.158 Vrms                                        | 0.158 Vrms                                     |
| С              | 50 Hz                              | 0.200 Vrms                                        | 0.223 Vrms                                     |
| D              | 60 Hz                              | 0.224 Vrms                                        | 0.245 Vrms                                     |
| E              | 250 Hz                             | 0.398 Vrms                                        | 0.500 Vrms                                     |
| F              | 1 kHz                              | 0.707 Vrms                                        | 1.000 Vrms                                     |
| G              | 1.7 kHz                            | 0.891 Vrms                                        | 1.000 Vrms                                     |
| н              | 2 kHz                              | 1.000 Vrms                                        | 1.000 Vrms                                     |
| I              | 5 kHz                              | 0.316 Vrms                                        | 1.000 Vrms                                     |
| J              | 6.5 kHz                            | 0.707 Vrms                                        | 0.707 Vrms                                     |
| К              | 10 kHz                             | 0.125 Vrms                                        | 0.500 Vrms                                     |

| DC104 - NOT SUPPORTED BY DCR |                             |                                 |  |  |
|------------------------------|-----------------------------|---------------------------------|--|--|
| Test Condition               | Ripple Frequency Components | MIL-STD-704B, C, D, E, & F Vrms |  |  |
| A                            | 1200 Hz                     | 0.80 Vrms                       |  |  |
|                              | 2400 Hz                     | 0.16 Vrms                       |  |  |
|                              | 3600 Hz                     | 0.26 Vrms                       |  |  |
|                              | 4800 Hz                     | 0.08 Vrms                       |  |  |
|                              | 6000 Hz                     | 0.13 Vrms                       |  |  |
|                              | 7200 Hz                     | 0.04 Vrms                       |  |  |
|                              | 8400 Hz                     | 0.06 Vrms                       |  |  |
| ·                            |                             |                                 |  |  |
| В                            | 2400 Hz                     | 0.80 Vrms                       |  |  |
|                              | 4800 Hz                     | 0.16 Vrms                       |  |  |
|                              | 7200 Hz                     | 0.26 Vrms                       |  |  |
|                              | 9600 Hz                     | 0.08 Vrms                       |  |  |
|                              | 12000 Hz                    | 0.13 Vrms                       |  |  |
|                              | 14400 Hz                    | 0.04 Vrms                       |  |  |

16800 Hz

0.06 Vrms

| Test<br>Cond. | SS<br>Voltage<br>Vdc | Rel. (%) | Time From<br>SS Voltage<br>to Voltage<br>Transient<br>Level<br>millisecon<br>ds | Voltage<br>Transien<br>t Level<br>Vdc | Relative<br>to Steady<br>State | Duration at<br>Voltage<br>Transient<br>Level<br>millisecond<br>S | Time From<br>Voltage<br>Transient<br>Level to SS<br>Voltage<br>millisecond<br>S | DCR<br>Steady<br>State<br>Setting<br>Vac | Scalin<br>g |
|---------------|----------------------|----------|---------------------------------------------------------------------------------|---------------------------------------|--------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------|-------------|
| Overvolta     | age Transient        | S        |                                                                                 |                                       |                                |                                                                  |                                                                                 |                                          |             |
| AA            | 29                   | 100.000% | < 1 msec                                                                        | 50                                    | 172.414%                       | 12.5 msec                                                        | < 1 msec                                                                        | 15.3                                     | 1.99        |
| BB            | 29                   | 100.000% | < 1 msec                                                                        | 50                                    | 172.414%                       | 12.5 msec                                                        | 70 msec                                                                         | 15.3                                     | 1.99        |
| CC            | 29                   | 100.000% | < 1 msec                                                                        | 40                                    | 137.931%                       | 45 msec                                                          | < 1 msec                                                                        | 15.3                                     | 1.99        |
| DD            | 29                   | 100.000% | < 1 msec                                                                        | 40                                    | 137.931%                       | 45 msec                                                          | 37.5 msec                                                                       | 15.3                                     | 1.99        |
| EE            | 29                   | 100.000% | < 1 msec                                                                        | 50<br>(3 times)                       | 172.414%                       | 10 msec<br>Every 0.5<br>msec                                     | < 1 msec                                                                        | 15.3                                     | 1.99        |
| FF            | 22                   | 100.000% | < 1 msec                                                                        | 50                                    | 227.273%                       | 12.5 msec                                                        | < 1 msec                                                                        | 11.8                                     | 1.99        |
| GG            | 22                   | 100.000% | < 1 msec                                                                        | 50                                    | 227.273%                       | 12.5 msec                                                        | 95 msec                                                                         | 11.8                                     | 1.99        |
| нн            | 22                   | 100.000% | < 1 msec                                                                        | 40                                    | 181.818%                       | 45 msec                                                          | < 1 msec                                                                        | 11.8                                     | 1.99        |
| II            | 22                   | 100.000% | < 1 msec                                                                        | 40                                    | 181.818%                       | 45 msec                                                          | 62.5 msec                                                                       | 11.8                                     | 1.99        |
| 11            | 22                   | 100.000% | < 1 msec                                                                        | 50<br>(3 times)                       | 227.273%                       | 10 msec<br>Every 0.5<br>msec                                     | < 1 msec                                                                        | 11.8                                     | 1.99        |
| Undervol      | tage Transier        | nts      |                                                                                 | •                                     |                                |                                                                  |                                                                                 |                                          |             |
| кк            | 29                   | 100.000% | < 1 msec                                                                        | 18                                    | 62.069%                        | 15 msec                                                          | < 1 msec                                                                        | 15.3                                     | 1.99        |
| LL            | 29                   | 100.000% | < 1 msec                                                                        | 18                                    | 62.069%                        | 15 msec                                                          | 234 msec                                                                        | 15.3                                     | 1.99        |
| ММ            | 29                   | 100.000% | < 1 msec                                                                        | 18<br>(3 times)                       | 62.069%                        | 10 msec                                                          | < 1 msec                                                                        | 15.3                                     | 1.99        |
| NN            | 22                   | 100.000% | < 1 msec                                                                        | 18                                    | 81.818%                        | 15 msec                                                          | < 1 msec                                                                        | 11.8                                     | 1.99        |
| 00            | 22                   | 100.000% | < 1 msec                                                                        | 18                                    | 81.818%                        | 15 msec                                                          | 85 msec                                                                         | 11.8                                     | 1.99        |
| РР            | 22                   | 100.000% | < 1 msec                                                                        | 18<br>(3 times)                       | 81.818%                        | 10 msec<br>Every 0.5<br>msec                                     | < 1 msec                                                                        | 11.8                                     | 1.99        |
| Combine       | d Transient          |          |                                                                                 |                                       |                                |                                                                  |                                                                                 |                                          |             |
| QQ            | 29                   | 100.000% | < 1 msec                                                                        | 18                                    | 62.069%                        | 10 msec                                                          | < 1 msec                                                                        | 15.3                                     | 1.99        |
|               | then                 | 100.000% | < 1 msec                                                                        | 50                                    | 172.414%                       | 12.5 msec                                                        | 70 msec                                                                         | 15.3                                     | 1.99        |
| RR            | 22                   | 100.000% | < 1 msec                                                                        | 18                                    | 81.818%                        | 10 msec                                                          | < 1 msec                                                                        | 11.8                                     | 1.99        |
|               | then                 |          | < 1 msec                                                                        | 50                                    | 227.273%                       | 12.5 msec                                                        | 62.5 msec                                                                       | 11.8                                     | 1.99        |

| vels | Vdc     | 28.0 | 29.0     | 22.0    |
|------|---------|------|----------|---------|
|      | Vac L-N | 14.8 | 15.3     | 11.8    |
|      | %       |      | 103.571% | 78.571% |

Scale Factor = 1.99

| Abnormal Limit | 704F    | DCR Setting Vac | Scaling |
|----------------|---------|-----------------|---------|
| Voltage        |         |                 |         |
| NLSS           | 22 Vdc  | 11.8            | 1.99    |
| Voltage        |         |                 |         |
| NHSS           | 29 Vdc  | 15.3            | 1.99    |
| Power Int.     | 50 msec |                 |         |

| Test Condition | Voltage (DC) | Vac Set for DCR | Duration of Interrupt                                                                                                           |
|----------------|--------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------|
| А              | 28           | 14.8            | 50 msec                                                                                                                         |
| В              | 22           | 11.8            | 50 msec                                                                                                                         |
| С              | 29           | 15.3            | 50 msec                                                                                                                         |
| D              | 28           | 14.8            | 30 msec                                                                                                                         |
| E              | 22           | 11.8            | 30 msec                                                                                                                         |
| F              | 29           | 15.3            | 30 msec                                                                                                                         |
| G              | 28           | 14.8            | 10 msec                                                                                                                         |
| н              | 22           | 11.8            | 10 msec                                                                                                                         |
| I              | 29           | 15.3            | 10 msec                                                                                                                         |
| ſ              | 28           | 14.8            | 50 msec (repeated 3 times, separated by 0.5 sec )                                                                               |
| к              | 28           | 14.8            | 50 msec (followed by a normal voltage<br>transient of 50 Vdc for 12.5 msec and<br>return to steady state voltage in 70<br>msec) |
| L              | 28           | 14.8            | 50 msec (followed by a normal<br>voltage transient of 200 Vdc for 15 msec<br>and return to steady state voltage in 85<br>msec)  |

| Test Condition | Voltage (DC) | Duration     |
|----------------|--------------|--------------|
| А              | 20           | 30 mins min. |
| В              | 31.5         | 30 mins min. |

| Abnormal Limit | 704F     | DCR Setting Vac | Scaling |
|----------------|----------|-----------------|---------|
| ALSS           | 20 Vdc   | 10.8            | 1.99    |
| AHSS           | 31.5 Vdc | 16.5            | 1.99    |

# LDC201

| Test<br>Conditio<br>n | Steady<br>State<br>Voltage<br>Vdc | Time From<br>SS V to V<br>Transient<br>Level msec | Voltage<br>Transient<br>Level Vdc | Relative<br>to Steady<br>State | Duration at<br>Voltage<br>Transient<br>Level | Time From V<br>Transient<br>Level to SS<br>Voltage or<br>Next V Level | DCR AC<br>Setting | Scaling |
|-----------------------|-----------------------------------|---------------------------------------------------|-----------------------------------|--------------------------------|----------------------------------------------|-----------------------------------------------------------------------|-------------------|---------|
| Overvolta             | ge Transien                       | ts                                                |                                   |                                |                                              |                                                                       |                   |         |
| AAA                   | 29                                | < 1 msec                                          | 50                                | 172.414%                       | 50 msec                                      | < 1 msec                                                              | 15.3              | 1.99    |
| BBB                   | 29                                | < 1 msec                                          | 50                                | 172.414%                       | 50 msec                                      | 15 msec                                                               | 15.3              | 1.99    |
|                       |                                   | then                                              | 45                                | 155.172%                       | decreasing                                   | 30 msec                                                               | 15.3              | 1.99    |
|                       |                                   | then                                              | 40                                | 137.931%                       | decreasing                                   | 60 msec                                                               | 15.3              | 1.99    |
|                       |                                   | then                                              | 35                                | 120.690%                       | decreasing                                   | 4.85 sec                                                              | 15.3              | 1.99    |
|                       |                                   | then                                              | 30                                | 103.448%                       | decreasing                                   | 1 sec                                                                 | 15.3              | 1.99    |
|                       |                                   | then                                              | 29                                | 100.000%                       |                                              |                                                                       | 15.3              | 1.99    |
| ССС                   | 29                                | < 1 msec                                          | 50<br>(3 times)                   | 172.414%                       | 50 msec<br>Every 0.5<br>sec                  | < 1 msec                                                              | 15.3              | 1.99    |
| DDD                   | 22                                | < 1 msec                                          | 50                                | 227.273%                       | 50 msec                                      | < 1 msec                                                              | 11.8              | 1.99    |
| EEE                   | 22                                | < 1 msec                                          | 50                                | 227.273%                       | 50 msec                                      | 15 msec                                                               | 11.8              | 1.99    |
|                       |                                   | then                                              | 45                                | 204.545%                       | decreasing                                   | 30 msec                                                               | 11.8              | 1.99    |
|                       |                                   | then                                              | 40                                | 181.818%                       | decreasing                                   | 60 msec                                                               | 11.8              | 1.99    |
|                       |                                   | then                                              | 35                                | 159.091%                       | decreasing                                   | 4.85 sec                                                              | 11.8              | 1.99    |
|                       |                                   | then                                              | 30                                | 136.364%                       | decreasing                                   | 8 sec                                                                 | 11.8              | 1.99    |
|                       |                                   | then                                              | 22                                | 100.000%                       |                                              |                                                                       | 11.8              | 1.99    |
| FFF                   | 22                                | < 1 msec                                          | 50<br>(3 times)                   | 227.273%                       | 50 msec<br>Every 0.5<br>sec                  | < 1 msec                                                              | 11.8              | 1.99    |
| Undervolt             | age Transie                       | nts                                               |                                   |                                |                                              |                                                                       |                   |         |
| GGG                   | 29                                | < 1 msec                                          | 7                                 | 24.138%                        | 50 msec                                      | < 1 msec                                                              | 15.3              | 1.99    |
| ннн                   | 29                                | < 1 msec                                          | 7                                 | 24.138%                        | 50 msec                                      | 15 msec                                                               | 15.3              | 1.99    |
|                       |                                   | then                                              | 12                                | 41.379%                        | increasing                                   | 30 msec                                                               | 15.3              | 1.99    |
|                       |                                   | then                                              | 17                                | 58.621%                        | increasing                                   | 60 msec                                                               | 15.3              | 1.99    |
|                       |                                   | then                                              | 22                                | 75.862%                        | increasing                                   | 4.85 sec                                                              | 15.3              | 1.99    |
|                       |                                   | then                                              | 28                                | 96.552%                        | increasing                                   | 1 sec                                                                 | 15.3              | 1.99    |
|                       |                                   | then                                              | 29                                | 100.000%                       |                                              |                                                                       | 15.3              | 1.99    |
| 111                   | 29                                | < 1 msec                                          | 7<br>(3 times)                    | 24.138%                        | 50 msec<br>Every 0.5<br>sec                  | < 1 msec                                                              | 15.3              | 1.99    |
| 111                   | 22                                | < 1 msec                                          | 7                                 | 31.818%                        | 50 msec                                      | < 1 msec                                                              | 11.8              | 1.99    |
| ККК                   | 22                                | < 1 msec                                          | 7                                 | 31.818%                        | 50 msec                                      | 15 msec                                                               | 11.8              | 1.99    |
|                       |                                   | then                                              | 12                                | 54.545%                        | increasing                                   | 30 msec                                                               | 11.8              | 1.99    |
|                       |                                   | then                                              | 17                                | 77.273%                        | increasing                                   | 60 msec                                                               | 11.8              | 1.99    |
|                       |                                   | then                                              | 22                                | 100.000%                       |                                              |                                                                       | 11.8              | 1.99    |
| LLL                   | 22                                | < 1 msec                                          | 7<br>(3 times)                    | 31.818%                        | 50 msec<br>Every 0.5                         | < 1 msec                                                              | 11.8              | 1.99    |

| Test<br>Conditio<br>n | Steady<br>State<br>Voltage<br>Vdc | Time From<br>SS V to V<br>Transient<br>Level msec | Voltage<br>Transient<br>Level Vdc | Relative<br>to Steady<br>State | Duration at<br>Voltage<br>Transient<br>Level | Time From V<br>Transient<br>Level to SS<br>Voltage or<br>Next V Level | DCR AC<br>Setting | Scaling |
|-----------------------|-----------------------------------|---------------------------------------------------|-----------------------------------|--------------------------------|----------------------------------------------|-----------------------------------------------------------------------|-------------------|---------|
|                       |                                   |                                                   |                                   |                                | sec                                          |                                                                       |                   |         |
| Combined              |                                   |                                                   |                                   |                                |                                              |                                                                       |                   |         |
| МММ                   | 29                                | < 1 msec                                          | 7                                 | 24.138%                        | 10 msec                                      | < 1 msec                                                              | 15.3              | 1.99    |
|                       |                                   | < 1 msec                                          | 50                                | 172.414%                       | 50 msec                                      | 15 msec                                                               | 15.3              | 1.99    |
|                       |                                   | then                                              | 45                                | 155.172%                       | decreasing                                   | 30 msec                                                               | 15.3              | 1.99    |
|                       |                                   | then                                              | 40                                | 137.931%                       | decreasing                                   | 60 msec                                                               | 15.3              | 1.99    |
|                       |                                   | then                                              | 35                                | 120.690%                       | decreasing                                   | 4.85 sec                                                              | 15.3              | 1.99    |
|                       |                                   | then                                              | 30                                | 103.448%                       | decreasing                                   | 1 sec                                                                 | 15.3              | 1.99    |
|                       |                                   | then                                              | 29                                | 100.000%                       |                                              |                                                                       | 15.3              | 1.99    |
| NNN                   | 22                                | < 1 msec                                          | 7                                 | 31.818%                        | 10 msec                                      | < 1 msec                                                              | 11.8              | 1.99    |
|                       |                                   | < 1 msec                                          | 50                                | 227.273%                       | 50 msec                                      | 15 msec                                                               | 11.8              | 1.99    |
|                       |                                   | then                                              | 45                                | 204.545%                       | decreasing                                   | 30 msec                                                               | 11.8              | 1.99    |
|                       |                                   | then                                              | 40                                | 181.818%                       | decreasing                                   | 60 msec                                                               | 11.8              | 1.99    |
|                       |                                   | then                                              | 35                                | 159.091%                       | decreasing                                   | 4.85 sec                                                              | 11.8              | 1.99    |
|                       |                                   | then                                              | 30                                | 136.364%                       | decreasing                                   | 8 sec                                                                 | 11.8              | 1.99    |
|                       |                                   | then                                              | 22                                | 100.000%                       |                                              |                                                                       | 11.8              | 1.99    |

| Test Condition | Voltage (DC) | Duration |
|----------------|--------------|----------|
| А              | 18           | 30 mins  |
| В              | 29           | 30 mins  |

| Abnormal Limit | 704F | DCR Setting | Scaling |
|----------------|------|-------------|---------|
| ELSS           | 18   | 9.7         | 1.99    |
| EHSS           | 29   | 15.3        | 1.99    |

# LDC501

| Test<br>Condition | SS<br>Voltage<br>Vdc | DCR<br>Setting | Scaling | Time From Steady<br>State Voltage to<br>Voltage Transient<br>Level milliseconds | Voltage<br>Transient<br>Level Vdc | % Vdc   | Time From<br>Voltage<br>Transient Level<br>to Steady State<br>Voltage |
|-------------------|----------------------|----------------|---------|---------------------------------------------------------------------------------|-----------------------------------|---------|-----------------------------------------------------------------------|
| AA                | 29                   | 15.3           | 1.99    | < 1 msec                                                                        | 12.0                              | 41.379% | 30 sec                                                                |

# LDC601

| Test Condition | Duration of Power Failure |
|----------------|---------------------------|
| А              | 100 msec                  |
| В              | 500 msec                  |
| С              | 3 secs                    |
| D              | 7 secs                    |

# LDC602

| Test Condition            | Phases       | Duration |
|---------------------------|--------------|----------|
| Physical Means Prevention | Verify/Check |          |
| If Not:                   |              |          |
| Reversed Phase Rotation   | N-A          | 30 mins  |
| Correct Phase Rotation    | A-N          | 30 mins  |

# 9.4.7 HDC 270VDC

# HDC101

| Test Plan | Description                                                                                                              | DCR AC Setting | Scaling |
|-----------|--------------------------------------------------------------------------------------------------------------------------|----------------|---------|
| Stimulus: | Apply 270Vdc                                                                                                             | 133.9Vac       | 2.027   |
|           | Close CB or contactor to EUT and measure Inrush current<br>Allow EUT to warm up before taking additional<br>measurements |                |         |
|           | Allow power to run for 15 mins.                                                                                          |                |         |
| Measure   | Inrush Current, all phases                                                                                               |                |         |
|           | Steady state voltage, current, power                                                                                     |                |         |
|           | Verify no half wave rectification is used                                                                                |                |         |
|           | Current Harmonics / All phases using HAS option                                                                          |                |         |
|           |                                                                                                                          |                |         |
| Repeat    | For each EUT operating mode                                                                                              |                |         |

# HDC102

| Test Condition | Voltage DC | DCR AC Setting | Scaling |
|----------------|------------|----------------|---------|
| А              | 270 Vdc    | 133.9Vac       | 2.027   |
| В              | 250 Vdc    | 240.0Vac       | 2.027   |
| С              | 280 Vdc    | 138.8Vac       | 2.027   |

# HDC103 DCR AC Setting = 133.9Vac, Scaling = 2.027

| Test Condition | Frequency of<br>Voltage Distortion | Amplitude of Voltage<br>Distortion<br>Rev B, C, D | Amplitude of Voltage Distortion<br>Rev E, F |
|----------------|------------------------------------|---------------------------------------------------|---------------------------------------------|
| Α              | 10 Hz                              | 0.6 Vrms                                          | 0.316 Vrms                                  |
| В              | 25 Hz                              | 0.893 Vrms                                        | 0.500 Vrms                                  |
| С              | 50 Hz                              | 1.197 Vrms                                        | 0.562 Vrms                                  |
| D              | 60 Hz                              | 1.307 Vrms                                        | 0.775Vrms                                   |
| E              | 250 Hz                             | 2.430 Vrms                                        | 1.581 Vrms                                  |
| F              | 1 kHz                              | 4.439 Vrms                                        | 3.162 Vrms                                  |
| G              | 1.7 kHz                            | 5.591 Vrms                                        | 3.162 Vrms                                  |
| Н              | 2 kHz                              | 6.000 Vrms                                        | 3.162 Vrms                                  |
| I              | 5 kHz                              | 1.844 Vrms                                        | 3.162 Vrms                                  |
| J              | 6.5 kHz                            | 1.315 Vrms                                        | 2.433 Vrms                                  |
| К              | 10 kHz                             | 0.755Vrms                                         | 1.581 Vrms                                  |

| Test Condition | Ripple Frequency Components | MIL-STD-704B, C, D, E, & F Vrms |
|----------------|-----------------------------|---------------------------------|
| Α              | 1200 Hz                     | 3.16 Vrms                       |
|                | 2400 Hz                     | 0.96 Vrms                       |
|                | 3600 Hz                     | 1.56 Vrms                       |
|                | 4800 Hz                     | 0.48 Vrms                       |
|                | 6000 Hz                     | 0.78 Vrms                       |
|                | 7200 Hz                     | 0.24 Vrms                       |
|                | 8400 Hz                     | 0.36 Vrms                       |
|                |                             |                                 |
| В              | 2400 Hz                     | 3.16 Vrms                       |
|                | 4800 Hz                     | 0.96 Vrms                       |
|                | 7200 Hz                     | 1.56 Vrms                       |
|                | 9600 Hz                     | 0.48 Vrms                       |
|                | 12000 Hz                    | 0.78 Vrms                       |
|                | 14400 Hz                    | 0.24 Vrms                       |
|                | 16800 Hz                    | 0.36 Vrms                       |

# HDC104 - NOT SUPPORTED BY DCR

# HDC105

| Test<br>Condition | SS<br>Voltage<br>Vdc | Rel. (%) | Time<br>From SS V<br>to V<br>Transient<br>Level<br>msec | V<br>Transient<br>Level Vdc | Relative<br>to SS V | Duration at<br>V Transient<br>Level msec | Time<br>From V<br>Transient<br>Level to<br>SS<br>Voltage<br>msec | DCR<br>Setting<br>Vac | Scaling |
|-------------------|----------------------|----------|---------------------------------------------------------|-----------------------------|---------------------|------------------------------------------|------------------------------------------------------------------|-----------------------|---------|
| Overvoltage       | Transients           |          |                                                         |                             |                     |                                          |                                                                  |                       |         |
| AA                | 280                  | 100.000% | < 1 msec                                                | 330                         | 117.857%            | 20 msec                                  | < 1 msec                                                         | 138.8                 | 2.027   |
| BB                | 280                  | 100.000% | < 1 msec                                                | 330                         | 117.857%            | 20 msec                                  | 20 msec                                                          | 138.8                 | 2.027   |
| CC                | 280                  | 100.000% | < 1 msec                                                | 305                         | 108.929%            | 30 msec                                  | < 1 msec                                                         | 138.8                 | 2.027   |
| DD                | 280                  | 100.000% | < 1 msec                                                | 305                         | 108.929%            | 30 msec                                  | 37.5 msec                                                        | 138.8                 | 2.027   |
| EE                | 280                  | 100.000% | < 1 msec                                                | 330 (3<br>times)            | 117.857%            | 10 msec<br>Every 0.5<br>msec             | < 1 msec                                                         | 138.8                 | 2.027   |
| FF                | 250                  | 100.000% | < 1 msec                                                | 330                         | 132.000%            | 20 msec                                  | < 1 msec                                                         | 124.0                 | 2.027   |
| GG                | 250                  | 100.000% | < 1 msec                                                | 330                         | 132.000%            | 20 msec                                  | 33 msec                                                          | 124.0                 | 2.027   |
| HH                | 250                  | 100.000% | < 1 msec                                                | 305                         | 122.000%            | 30 msec                                  | < 1 msec                                                         | 124.0                 | 2.027   |
| II                | 250                  | 100.000% | < 1 msec                                                | 305                         | 122.000%            | 30 msec                                  | 21 msec                                                          | 124.0                 | 2.027   |
| 11                | 250                  | 100.000% | < 1 msec                                                | 330 (3<br>times)            | 132.000%            | 10 msec<br>Every 0.5<br>msec             | < 1 msec                                                         | 124.0                 | 2.027   |
| Undervoltag       | e Transient          | ts       |                                                         |                             |                     |                                          |                                                                  |                       |         |
| КК                | 280                  | 100.000% | < 1 msec                                                | 200                         | 71.429%             | 10 msec                                  | < 1 msec                                                         | 138.8                 | 2.027   |
| LL                | 280                  | 100.000% | < 1 msec                                                | 200                         | 71.429%             | 10 msec                                  | 49 msec                                                          | 138.8                 | 2.027   |
| ММ                | 280                  | 100.000% | < 1 msec                                                | 200 (3<br>times)            | 71.429%             | 10 msec<br>Every 0.5<br>sec              | < 1 msec                                                         | 138.8                 | 2.027   |
| NN                | 250                  | 100.000% | < 1 msec                                                | 200                         | 80.000%             | 10 msec                                  | < 1 msec                                                         | 124.0                 | 2.027   |
| 00                | 250                  | 100.000% | < 1 msec                                                | 200                         | 80.000%             | 10 msec                                  | 30 msec                                                          | 124.0                 | 2.027   |
| РР                | 250                  | 100.000% | < 1 msec                                                | 200 (3<br>times)            | 80.000%             | 10 msec<br>Every 0.5<br>sec              | < 1 msec                                                         | 124.0                 | 2.027   |
| Combined T        | ransient             |          |                                                         |                             |                     |                                          |                                                                  |                       |         |
| QQ                | 280                  | 100.000% | < 1 msec                                                | 200                         | 71.429%             | 10 msec                                  | < 1 msec                                                         | 138.8                 | 2.027   |
|                   | then                 | 100.000% | < 1 msec                                                | 330                         | 117.857%            | 20 msec                                  | 20 msec                                                          | 138.8                 | 2.027   |
| RR                | 250                  | 100.000% | < 1 msec                                                | 200                         | 80.000%             | 10 msec                                  | < 1 msec                                                         | 124.0                 | 2.027   |
|                   | then                 |          | < 1 msec                                                | 330                         | 132.000%            | 20 msec                                  | 33 msec                                                          | 124.0                 | 2.027   |

Repetitive levels

| els | Vdc     | 270.0 | 280.0    | 250.0   |
|-----|---------|-------|----------|---------|
|     | Vac L-N | 133.9 | 138.8    | 124.0   |
|     | %       |       | 103.704% | 92.593% |

| Abnormal Limit | 704F    | DCR Setting Vac | Scaling |
|----------------|---------|-----------------|---------|
| Voltage        |         |                 |         |
| NLSS           | 250 Vdc | 124.0           | 2.027   |
| Voltage        |         |                 |         |
| NHSS           | 280 Vdc | 138.8           | 2.027   |
| Power Int.     | 50 msec |                 |         |

| Test Condition | Voltage (DC) | Vac Set for DCR | Duration of Interrupt                                                                                                          |
|----------------|--------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------|
| А              | 270          | 133.9           | 50 msec                                                                                                                        |
| В              | 250          | 124.0           | 50 msec                                                                                                                        |
| с              | 280          | 138.8           | 50 msec                                                                                                                        |
| D              | 270          | 133.9           | 30 msec                                                                                                                        |
| E              | 250          | 124.0           | 30 msec                                                                                                                        |
| F              | 280          | 138.8           | 30 msec                                                                                                                        |
| G              | 270          | 133.9           | 10 msec                                                                                                                        |
| н              | 250          | 124.0           | 10 msec                                                                                                                        |
| I              | 280          | 138.8           | 10 msec                                                                                                                        |
| ſ              | 270          | 133.9           | 50 msec (repeated 3 times, separated by 0.5 sec )                                                                              |
| к              | 270          | 133.9           | 50 msec (followed by a normal voltage<br>transient of 330 Vdc for 20 msec and<br>return to steady state voltage in 20 msec)    |
| L 270 133.9    |              | 133.9           | 50 msec (followed by a normal<br>voltage transient of 200 Vdc for 15 msec<br>and return to steady state voltage in 85<br>msec) |

HDC301

| Test Condition | Voltage (DC) | Duration     |
|----------------|--------------|--------------|
| A              | 240          | 30 mins min. |
| В              | 290          | 30 mins min. |

| Abnormal Limit | 704F    | DCR Setting Vac | Scaling |
|----------------|---------|-----------------|---------|
| NLSS           | 240 Vdc | 119.1           | 2.027   |
| NHSS           | 290 Vdc | 143.8           | 2.027   |

#### HDC302

| Test<br>Condition         | SS<br>Voltage<br>DC    | SS V to V<br>Transient<br>Level | V<br>Transient<br>Level<br>(Vdc) | % of Vnom | Duration                 | Time From V Level to<br>SS V or Next V Level |  |  |
|---------------------------|------------------------|---------------------------------|----------------------------------|-----------|--------------------------|----------------------------------------------|--|--|
| Overvoltage Tr            | Overvoltage Transients |                                 |                                  |           |                          |                                              |  |  |
| AA                        | 280                    | < 1 msec                        | 350                              | 125.000%  | 50 msec                  | < 1 msec                                     |  |  |
| BB                        | 280                    | < 1 msec                        | 350                              | 125.000%  | 50 msec                  | 10 msec                                      |  |  |
|                           |                        | then                            | 340                              | 121.429%  | decreasing               | 15 msec                                      |  |  |
|                           |                        | then                            | 330                              | 117.857%  | decreasing               | 25 msec                                      |  |  |
|                           |                        | then                            | 320                              | 114.286%  | decreasing               | 190 msec                                     |  |  |
|                           |                        | then                            | 300                              | 107.143%  | decreasing               | 1.71 sec                                     |  |  |
|                           |                        |                                 | 280                              | 100.000%  |                          |                                              |  |  |
| СС                        | 280                    | < 1 msec                        | 350<br>(3 times)                 | 125.000%  | 50 msec<br>Every 0.5 sec | < 1 msec                                     |  |  |
| DD                        | 250                    | < 1 msec                        | 350                              | 140.000%  | 50 msec                  | < 1 msec                                     |  |  |
| EE                        | 250                    | < 1 msec                        | 350                              | 140.000%  | 50 msec                  | 10 msec                                      |  |  |
|                           |                        | then                            | 340                              | 136.000%  | decreasing               | 15 msec                                      |  |  |
|                           |                        | then                            | 330                              | 132.000%  | decreasing               | 25 msec                                      |  |  |
|                           |                        | then                            | 320                              | 128.000%  | decreasing               | 190 msec                                     |  |  |
|                           |                        | then                            | 300                              | 120.000%  | decreasing               | 6.7 sec                                      |  |  |
|                           |                        |                                 | 250                              | 100.000%  |                          |                                              |  |  |
| FF                        | 250                    | < 1 msec                        | 350<br>(3 times)                 | 140.000%  | 50 msec<br>Every 0.5 sec | < 1 msec                                     |  |  |
| Undervoltage <sup>-</sup> | Transients             |                                 |                                  |           |                          |                                              |  |  |
| GG                        | 280                    | < 1 msec                        | 180                              | 64.286%   | 50 msec                  | < 1 msec                                     |  |  |
| нн                        | 280                    | < 1 msec                        | 180                              | 64.286%   | 50 msec                  | 10 msec                                      |  |  |
|                           |                        | then                            | 190                              | 67.857%   | decreasing               | 15 msec                                      |  |  |
|                           |                        | then                            | 200                              | 71.429%   | decreasing               | 25 msec                                      |  |  |
|                           |                        | then                            | 210                              | 75.000%   | decreasing               | 190 msec                                     |  |  |
|                           |                        | then                            | 230                              | 82.143%   | decreasing               | 6.7 sec                                      |  |  |
|                           |                        |                                 | 280                              | 100.000%  |                          |                                              |  |  |

| Test<br>Condition | SS<br>Voltage<br>DC | SS V to V<br>Transient<br>Level | V<br>Transient<br>Level<br>(Vdc) | % of Vnom           | Duration                 | Time From V Level to<br>SS V or Next V Level |
|-------------------|---------------------|---------------------------------|----------------------------------|---------------------|--------------------------|----------------------------------------------|
| II                | 280                 | < 1 msec                        | 180<br>(3 times)                 | 64.286%             | 50 msec<br>Every 0.5 sec | < 1 msec                                     |
| 11                | 250                 | < 1 msec                        | 180                              | 72.000%             | 50 msec                  | < 1 msec                                     |
| КК                | 250                 | < 1 msec                        | 180                              | 72.000%             | 50 msec                  | 10 msec                                      |
|                   |                     | then                            | 190                              | 76.000%             | decreasing               | 15 msec                                      |
|                   |                     | then                            | 200                              | 80.000%             | decreasing               | 25 msec                                      |
|                   |                     | then                            | 210                              | 84.000%             | decreasing               | 190 msec                                     |
|                   |                     | then                            | 230                              | 92.000%             | decreasing               | 1.71 sec                                     |
|                   |                     |                                 | 250                              | 100.000%            |                          |                                              |
| LL                | 250                 | < 1 msec                        | 180<br>(3 times)                 | 72.000%             | 50 msec<br>Every 0.5 sec | < 1 msec                                     |
| Combined Tran     | nsient              |                                 |                                  |                     |                          |                                              |
| MM                | 280                 | < 1 msec<br>< 1msec             | 180<br>350                       | 64.286%<br>125.000% | 10 msec<br>50 msec       | < 1 msec<br>10 msec                          |
|                   |                     | then                            | 340                              | 121.429%            | decreasing               | 15 msec                                      |
|                   |                     | then                            | 330                              | 117.857%            | decreasing               | 25 msec                                      |
|                   |                     | then                            | 320                              | 114.286%            | decreasing               | 190 msec                                     |
|                   |                     | then                            | 300                              | 107.143%            | decreasing               | 1.71 sec                                     |
|                   |                     |                                 | 280                              | 100.000%            |                          |                                              |
| NN                | 250                 | < 1 msec<br>< 1msec             | 180<br>350                       | 72.000%<br>140.000% | 10 msec<br>50 msec       | < 1 msec<br>10 msec                          |
|                   |                     | then                            | 340                              | 136.000%            | decreasing               | 15 msec                                      |
|                   |                     | then                            | 330                              | 132.000%            | decreasing               | 25 msec                                      |
|                   |                     | then                            | 320                              | 128.000%            | decreasing               | 190 msec                                     |
|                   |                     | then                            | 300                              | 120.000%            | decreasing               | 6.7 sec                                      |
|                   |                     |                                 | 250                              | 100.000%            |                          |                                              |

# HDC401

| Test Condition | Voltage (DC) | Duration     |
|----------------|--------------|--------------|
| А              | 250          | 30 mins min. |
| В              | 280          | 30 mins min. |

| Abnormal Limit | 704F    | DCR Setting | Scaling |
|----------------|---------|-------------|---------|
| ELSS           | 250 Vdc | 124.0       | 2.027   |
| EHSS           | 280 Vdc | 138.8       | 2.027   |

#### HDC501

| Test<br>ndition | Steady<br>State<br>Voltage<br>Vdc | DCR<br>Setting | Scalin<br>g | Time From<br>Steady State<br>Voltage to<br>Voltage<br>Transient Level<br>milliseconds | Voltage<br>Transient<br>Level Vdc | % Vdc   | Time From Voltage<br>Transient Level to Steady<br>State Voltage |
|-----------------|-----------------------------------|----------------|-------------|---------------------------------------------------------------------------------------|-----------------------------------|---------|-----------------------------------------------------------------|
| AA              | 280 Vdc                           | 138.8          | 2.027       | < 1 msec                                                                              | 115 Vdc                           | 41.071% | 30 sec                                                          |

# HDC601

| Test Condition | Duration of Power Failure |
|----------------|---------------------------|
| А              | 100 msec                  |
| В              | 500 msec                  |
| С              | 3 secs                    |
| D              | 7 secs                    |

#### HDC602

| Test Condition            | Phases       | Duration |
|---------------------------|--------------|----------|
| Physical Means Prevention | Verify/Check |          |
| If Not:                   |              |          |
| Reversed Phase Rotation   | N-A          | 30 mins  |
| Correct Phase Rotation    | A-N          | 30 mins  |

# INDEX

| Analog Input                                                               |
|----------------------------------------------------------------------------|
| gain 43                                                                    |
| application specific                                                       |
| Auxiliary Inputs                                                           |
| xxx106                                                                     |
| default directory15                                                        |
| dual-range14                                                               |
| install program15                                                          |
| installation is progressing18                                              |
| J5 connector                                                               |
| pin-out 42                                                                 |
| License Agreement 17                                                       |
| measurement data                                                           |
| xxx101                                                                     |
| xxx106                                                                     |
| xxx107                                                                     |
| MIL-STD-704F 1, 12, 13, 14, 15, 16, 19, 20, 21, 24, 29, 30, 34, 51, 54, 55 |
| naming convention20                                                        |
| Pacific Power Source 1, 3, 4, 5, 7, 12, 13, 14, 15, 20, 21, 22, 28, 29, 31 |
| power groups                                                               |
| supported51                                                                |
| registration entries19                                                     |
| report                                                                     |
| information fields28                                                       |
| unlock                                                                     |

| report template        | 28     |
|------------------------|--------|
| Report Template        | 22     |
| requirements           | 14     |
| results                |        |
| test step              | 26     |
| test descriptions      | 25     |
| Test Manager           | 15     |
| Test Manager menu      | 20     |
| test report            | 27     |
| test reports           |        |
| customize              | 29     |
| test sequence          |        |
| coverage               | 51     |
| Levels and Durations   | 68     |
| numbering              | 55     |
| test setup             |        |
| xxx101                 | 35     |
| xxx106                 | 40     |
| xxx107                 | 45     |
| xxx108                 | 47, 50 |
| transformer coupled    | 14     |
| Transient Time setting | 34     |
| uninstall              | 19     |
| UPC Manager            | 15     |
| VB Scripting           | 30     |
| version number         | 24     |